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P R E FA C E

This pedagogical book addresses the modeling, interpreting, testing,
and presentation of interactive propositions in regression analysis.

We intend it to provide guidance on these issues to advanced undergrad-
uates, graduate students, and researchers in political science and other
social-science disciplines. We begin by explaining how verbal statements
of interactive arguments and hypotheses translate into mathematical em-
pirical models including, and statistical inferences regarding, interactive
terms. The book then provides advice on estimating, interpreting, and
presenting the results from such models. It provides next an explanation
of some existing general practice rules and, last, a discussion of more ad-
vanced topics including nonlinear models and stochastically interactive
models. The concluding chapter outlines our general advice for re-
searchers as they formulate, estimate, test, interpret, and present interac-
tive hypotheses in their empirical work. 

This project evolved from a previous paper, Cindy D. Kam, Robert J.
Franzese, Jr., and Amaney Jamal, “Modeling Interactive Hypotheses and
Interpreting Statistical Evidence Regarding Them,” presented at the
1999 Annual Meetings of the American Political Science Association. We
thank Amaney Jamal for her key role in those origins, and we also grate-
fully acknowledge Joel Simmons for research assistance in updating
some data from the previous project. Finally, we thank Jacob Felson and
Michael Robbins for assistance in preparing the final manuscript.

All calculations, tables, and figures can be reproduced using sup -
plementary materials located at www.press.umich.edu/KamFranzese/
Interactions.html.
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I N T R O D U C T I O N

Social scientists study complex phenomena. This complexity requires a
wide variety of quantitative methods and tools for empirical analyses.

Often, however, social scientists might begin with interest in identifying
the simple impact of some variable(s), X, on some dependent variable, Y.
Political scientists might study the effect of socioeconomic status on an in-
dividual’s level of political participation or the effect of partisanship on a
legislator’s voting behavior. Scholars of comparative politics might be in-
terested in the effect of electoral rules such as multimember versus single-
member districts on the party composition of legislatures. Scholars of in-
ternational relations might study the effect of casualties on the duration
of military conflict. Psychologists might study the effect of personality
traits on an individual’s willingness to obey authority or the effect of an
experimental manipulation of background noise on an individual’s ability
to solve a problem. Economists might investigate the effect of education
on labor-market earnings or the effect of fiscal policy on macroeconomic
growth. Sociologists might examine the effect of the number of years an
immigrant has lived in a host country on his or her level of cultural and
linguistic assimilation. Each of these examples posits a simple relationship
between some independent variable and a dependent variable. 

One of the simplest empirical model specifications for these types of
queries is the linear-additive model. The linear-additive model proposes
that a dependent variable has a linear-additive, that is, a simple, con-
stant, unconditional, relationship with a set of independent variables.
For each unit increase in an independent variable, the linear-additive



model assumes that the dependent variable responds in the same way,
under any conditions. Much of the quantitative analysis in print across
the social sciences exemplifies this approach. 

Such linear-additive approaches address what might be described as a
“first generation” question, where researchers seek to establish whether
some relationship exists between an independent variable, X, and a de-
pendent variable, Y. A “second generation” question adds an additional
layer of complexity, asking not simply whether some relationship exists
between an independent variable and a dependent variable but under
what conditions and in what manner such a relationship exists: for ex-
ample, under what conditions is the relationship greater or lesser? Thus,
this slightly more complex question posits that the effect of some vari-
able, X, on the dependent variable, Y, depends upon a third (set of) in-
dependent variable(s), Z.1

One could imagine adding such a layer of complexity to each of the
preceding examples. For example, the political scientist studying the effect
of socioeconomic status on political participation might suspect that this
effect depends upon the level of party mobilization in an election—the
participatory gains from socioeconomic status might be attenuated when
political parties do more to mobilize citizens at all levels. The effect of a
legislator’s partisanship on his or her votes surely depends upon whether
bills have bipartisan or partisan sponsorship. The effect of  multi member
districts on the party composition of legislatures likely depends on a third
variable, societal fragmentation. The effect of casualties on the duration
of military conflict might depend on domestic economic conditions. The
psychologists might expect the effects of certain personality traits on indi-
viduals’ willingness to obey authority to increase, and of others to de-
crease, with age, and the effect of background noise on problem-solving
ability might depend on how well rested the subject is. The economist
studying the returns to education might expect booming macroeconomic
conditions to magnify, and slumping ones to dampen, the effect of educa-
tion on labor-market earnings; and the one studying fiscal policy would
predict zero real-growth effects when the public expected policies and
nonzero effects only when policies were unexpected. Finally, the sociolo-
gist studying immigrant assimilation might expect the years lived in the
host country to have a greater effect for immigrants from source countries
with smaller diasporas than for immigrants from source countries with

1. For expositional ease and clarity, the discussion that follows primarily focuses on a
single variable, x, and a single variable, z, as they relate to a single dependent variable, y.
The general claims extend naturally to vectors X, Z, and Y.
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larger diasporas, the former perhaps being forced to assimilate more
quickly. Social scientists often evaluate such hypotheses using the linear-
interactive, or multiplicative, term.2

Interaction terms are hardly new to social-science research; indeed,
their use is now almost common. Given the growing attention to the
roles of institutions and institutional contexts in politics, economics, and
society, and the growing attention to how context more generally (e.g.,
information environments, neighborhood composition, social networks)
conditions the influence of individual-level characteristics on behavior
and attitudes, interactive hypotheses should perhaps become even more
common. However, despite occasional constructive pedagogical treatises
on interaction usage in the past, a commonly known, accepted, and fol-
lowed methodology for using and interpreting interaction terms contin-
ues to elude social scientists. Partly as a consequence, misinterpretation
and substantive and statistical confusion remain rife. Sadly, Friedrich’s
(1982) summary of the state of affairs could still serve today:

while multiplicative terms are widely identified as a way to assess
interaction in data, the extant literature is short on advice about
how to interpret their results and long on caveats and disclaimers
regarding their use. (798)

This book seeks to redress this and related persistent needs. Our dis-
cussion assumes working knowledge of the linear-additive regression
model.3 Chapter 2 begins our discussion of modeling and interpreting

2. Scholars also refer to the interactive term as the multiplicative or product term, or
the moderator variable, depending on the discipline. We use interactive term and multi-
plicative term interchangeably. In the field of psychology, distinctions are made between
mediator and moderator variables (Baron and Kenny 1986). The distinction is similar to
that made in other disciplines, including sometimes in political science, between interven -
ing and interactive variables, but this terminology is not consistently applied across disci-
plines and sometimes not even within disciplines. Our discussion applies to moderator and
interactive variables, which Baron and Kenny (1986) define as “a qualitative . . . or quan-
titative . . . variable that affects the direction and/or strength of the relation between an in-
dependent or predictor variable and a dependent or criterion variable” (1174). We reiter -
ate that interactive terms apply when scholars theorize that z affects the existence or
magnitude of the relationship between x and y, not when scholars believe that some vari-
able z affects the level of some variable x that in turn relates to y. This latter argument rep-
resents z as a mediating or intervening variable, and an interaction term is not the appro-
priate way to model it. Instead, mediation is more appropriately modeled by linear-additive
regression in various sorts of path analysis; moderation implies interactions.

3. For a refresher on the linear-additive regression model, the interested reader might
consult Achen (1982). 
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 interactive hypotheses. This chapter emphasizes how interactive terms
are essential for testing common and important classes of theories in so-
cial science and provides several theoretical examples in this regard. 

In chapter 3, we offer advice on connecting theoretical propositions
that suggest interactive relationships to empirical models that enable the
researcher to test those interactive hypotheses. We then show which stan-
dard statistical tests (certain common t- and F-tests) speak to which of
the specific hypotheses that are typically nested in interactive arguments.
We discuss a generic approach to interpreting the estimation results of in-
teractive models and illustrate its application across an array of different
types of interactive relationships where different types and numbers of
variables are involved. We also address the presentation of interaction ef-
fects. In all cases, we urge researchers to go beyond merely reporting in-
dividual coefficients and standard-error estimates. Instead, we strongly
suggest graphical or tabular presentation of results, including effect-line
graphs or conditional-coefficient tables, complete with standard errors,
confidence intervals, or significance levels of those effects or conditional
coefficients. We discuss and provide examples of several types of graphs
that facilitate interpretation of interaction effects, including effect-line
plots, scatter plots, and box plots. We also provide instructions on how
to construct these plots and tables with statistical software commonly
used in social science, in addition to specific mathematical formulas for
their elements. Our approach underscores the importance of under -
standing the elementary logic and mathematics underlying models that
use interactive terms, rather than simply providing a set of commands
for the user to enter mechanically. If students and scholars understand
the foundations of this generic approach, then they will be well equipped
to apply and extend it to any new theoretical problems and empirical
analyses. 

In chapter 4, we consider certain general-practice rules for modeling
interactions that some previous methodological treatments advise and
social scientists often follow. We suggest that some scholars may be mis-
interpreting these rules, and we argue that such general rules should
never substitute for a solid understanding of the simple mathematical
structure of interaction terms. For example, “centering” the variables to
be interacted, as several methods texts advise, alters nothing important
statistically and nothing at all substantively. Furthermore, the common
admonition that one must include both x and z if the model contains an
xz term is an often-advisable philosophy-of-science guideline—as an ap-
plication of Occam’s razor (that the simplest explanation is to be pre-



ferred) and, as a practical matter, such inclusion is usually a much safer
adage than exclusion—but it is neither logically nor statistically neces-
sary and not always advisable, much less required. 

Chapter 5 discusses some more technical concerns often expressed re-
garding interactive models. First, we discuss the question of pooled-
 sample versus separate-sample estimation that arises in every social-
 science discipline. We show that estimating interactive effects in separate
samples is essentially equivalent to estimating them in a pooled sample
but that pooled-sample estimation is more flexible and facilitates statis-
tical comparisons even if one might prefer separate- sample estimation
for convenience in preliminary analyses. The chapter then discusses non-
linear models. Although all of our preceding discussion addresses multi-
plicative terms exclusively in the context of linear-regression models, sta-
tistical  research in social science increasingly employs qualitative or
limited  dependent-variable models or other models beyond linear ones.
We show first that most of the discussion regarding linear-regression
models holds for nonlinear models, and then we provide specific guid-
ance for the special case of interactive terms in two commonly used non-
linear models: probit and logit. Finally, we address random-coefficient
and hierarchical models. As Western (1998) notes, using multiplicative
terms alone to capture the dependence on z of x’s effect on y (and vice
versa) implicitly assumes that the dependence is deterministic. Yet this
dependence is surely as stochastic as any other empirical relationship we
might posit in social science, and so we should perhaps model it as such.
Many researchers take this need to incorporate a stochastic element as
demanding the use of random-coefficient models. Others go further to
claim that cross-level interaction terms—that is, those involving vari-
ables at a microlevel (e.g., individual characteristics in a survey) and at a
more macrolevel (e.g., characteristics of that individual’s state of resi-
dence)—that do not allow such stochastic elements may be biased. As a
consequence, a growing number of scholars recommend the use of hier-
archical linear models (HLM) or first-stage separate-sample estimation
of microlevel factors’ effects followed by second-stage estimation of
macrolevel and macrolevel-conditional effects from the first-stage esti-
mates. Actually, separate-sample versus pooled-sample estimation and
whether one must apply two-stage or HLM techniques in multilevel data
are related issues, and, as we show, under some conditions, the simple
multiplicative term sacrifices  little relative to these more complicated ap-
proaches. Moreover, steps of intermediate complexity can allay those
concerns (not quite fully, but likely sufficiently) under a wide array of
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 circumstances. Thus, some of these concerns are, strictly speaking, well
founded, but they do not amount to serious practical problems for social
scientists as often as one might have supposed.

Finally, chapter 6 provides a summary of our advice for researchers
seeking to formulate, estimate, test, and present interactive hypotheses in
empirical research.

6 Modeling and Interpreting Interactive Hypotheses in Regression Analysis
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I N T E R A C T I O N S  I N

S O C I A L  S C I E N C E

The interaction term received intense scrutiny, much of it critical,
upon its introduction to social science. Althauser (1971) wrote, “It

would appear, in short, that including multiplicative terms in regression
models is not an appropriate way of assessing the presence of interaction
among our independent variables” (466). Zedeck (1971) concurred,
“The utility of the moderator variable research is limited by statistical
problems, by the limited understanding of the statistical operation of
moderators, and by lack of a rapid systematic approach to the identifi-
cation of moderators” (307). 

As Friedrich (1982) noted, early criticism of interactions focused on
three concerns: difficulty in interpreting coefficients, colinearity among in-
dependent variables induced by the multiplication of terms, and the na-
ture of measurement of independent variables (whether they be interval,
ratio, or nominal scales). These concerns inspired some scholars (e.g., Al-
thauser 1971; Zedeck 1971) to object to any usage of interactive terms.
Others suggested alternative methods to incorporate interactions in mod-
els by rescaling variables to reduce colinearity (Allison 1977; Cronbach
1987; Dunlap and Kemery 1987; Smith and Sasaki 1979; Tate 1984).

Two and a half decades after the seminal article by Friedrich (1982) de-
fending interactions, full and accurate understanding of the modeling, in-
terpretation, and presentation of interactive hypotheses still eludes social
scientists, even though multiplicative terms appear frequently in empirical
analysis. For example, in a count of journal articles that appeared from
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1996 to 2001 in the three top political-science journals,1 we have found
that 54 percent of articles use some statistical methods (defined as articles
reporting any standard errors or hypothesis tests). Of these articles, 24
percent employ interactive terms. This amounts to about one-eighth of all
articles published during this time.2 Despite this appreciable and increas-
ing use of interaction terms in empirical analysis, careful consideration of
important classes of theoretical arguments in political science strongly
suggests that they nonetheless remain considerably underutilized. Further,
when interactions are employed in empirical work, several misunderstand-
ings regarding their interpretation still permeate the field. 

This widespread and perhaps expanding usage of interactions not -
withstanding, we contend that still more empirical work should contain
interactions than currently does, given the substance of many political-
science arguments. Indeed, interactive arguments arise commonly in
every empirical subfield in the social sciences. For political scientists, for
example, interactive arguments appeal to scholars who study political in-
stitutions, to scholars who study political behavior, and perhaps espe-
cially to those who study the impact of institutions on political behavior,
not to mention political economy, political culture, and all the other sub-
stantive areas of study within political science. These interactive argu-
ments arise commonly in other disciplines: sociologists interested in the
interactions between individuals and their social contexts, microecono-
mists examining the effect of public policies such as the minimum wage
on different types of workers, macroeconomists studying the impact of
fiscal or monetary policy under varying institutional conditions, and psy-
chologists seeking to identify heterogeneity in individuals’ reactions to
experimental treatments. Interactions enable testing of these conditional-
effect propositions.

In political science, for example, the core of most institutional argu-
ments, reflecting perhaps the dominant approach to modern, positive3

political science, implies interactive effects. In one influential statement
of the approach, Hall (1986) states:

1. American Political Science Review, American Journal of Political Science, and Jour-
nal of Politics.

2. Incidentally, these shares likely dramatically understate the mathematical and tech-
nical nature of the field since our denominator includes pure-theory articles, formal and
philosophical, and our numerator excludes formal theory. The share of statistical and for-
mal-theoretical articles in these journals likely approaches 75 percent of all non-political-
philosophy articles.

3. We use the term positive as opposed to normative here and do not intend it to con-
note formal necessarily.

8 Modeling and Interpreting Interactive Hypotheses in Regression Analysis
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the institutional analysis of politics . . . emphasizes institutional
relationships, both formal and conventional, that bind the com-
ponents of the state together and structure its relations with soci-
ety . . . [I]nstitutions . . . refers to the formal rules, compliance
procedures, and standard operating practices that structure the re-
lationship between individuals in various units of the polity and
economy . . . Institutional factors play two fundamental roles . . .
[They] affect the degree of power that any one set of actors has
over policy outcomes [. . . and they . . .] influence an actor’s defi-
nition of his own interests, by establishing his . . . responsibilities
and relationship to other actors . . . With an institutionalist model
we can see policy as more than the sum of countervailing pressure
from social groups. That pressure is mediated by an organiza-
tional [i.e., institutional] dynamic. (19; emphasis added)

Thus, in this approach, and inherently in all institutional approaches,
institutions are interactive variables that funnel, moderate, or otherwise
shape the political processes that translate the societal structure of inter-
ests into effective political pressures, those pressures into public-policy-
making responses, and/or those policies into outcomes. Across all the
methodological and substantive domains of institutional analysis, fur-
ther examples abound:

[political struggles] are mediated by the institutional setting in
which they take place. (Ikenberry 1988, 222–23; emphasis added)

[1] institutions constrain and refract politics but . . . are never the
sole “cause” of outcomes. Institutional analyses do not deny the
broad political forces that animate [. . . class or pluralist conflict,
but stress how . . .] institutions structure these battles and, in so
doing, influence their outcomes. [2. They] focus on how [the ef-
fects of] macrostructures such as class are magnified or mitigated
by  intermediate-level institutions . . . [they] help us integrate an
understanding of general patterns of political history with an ex-
planation of the contingent nature of political and economic de-
velopment . . . [3] Institutions may be resistant to change, but
their impact on political outcomes can change over time in subtle
ways in response to shifts in the broader socioeconomic or polit-
ical context. (Steinmo and Thelen 1992, 3, 11–12, 18; emphasis
added)



the idea of structure-induced equilibrium is clearly a move [to-
ward] incorporating institutional features into rational-choice ap-
proaches. Structure and procedure combine with preferences to
produce outcomes. (Shepsle 1989, 137; emphasis added)

Other recent examples include research that connects the societal
structure of interests to effective political pressure through electoral in-
stitutions: most broadly, plurality-majority versus proportional represen-
tation (e.g., Cox 1997; Lijphart 1994; Ordeshook and Shvetsova 1994);
research that studies how governmental institutions, especially those that
affect the number and polarization of key policymakers (veto actors),
shape policy-making responses to such pressures (e.g., Tsebelis 2002);
 research that stresses how the institutional configuration of the economy,
such as the coordination of wage-price bargaining, shapes the effect of
certain policies, such as monetary policy (see Franzese, 2003b, for a re-
view). Examples could easily proliferate yet further.

In every case, and at each step of the analysis, from interest structure
to outcomes (and back), the role of institutions is to shape, structure, or
condition4 the effect of some other variable(s)5 on the dependent variable
of interest. That is, most (probably all) institutional arguments are inher-
ently interactive. Yet, with relatively rare exceptions, empirical evalua-
tions of institutional arguments have neglected this interactivity in their
models.

A more generic example further illustrates the common failure of em-
pirical models to reflect the interactions that theoretical models imply. Po-
litical scientists and economists consider principal-agent (i.e., delegation)
situations interesting, problematic, and worthy of study because, if each
had full control, agents would determine policy, y1, by responding to some
(set of) factor(s), X, according to some function, y1 � f(X). Principals,
however, would respond to some different (set of) factor(s), Z, according
to some function, y2 � g(Z). For example, the principal might be a current
government, which responds to various political-economic conditions in
setting inflation policy, and the agent an unresponsive central bank, as in
Franzese (1999). Scholars then offer some arguments about how institu-

10 Modeling and Interpreting Interactive Hypotheses in Regression Analysis

4. Extending the list of synonyms might prove a useful means of identifying interactive
arguments. When one says x alters, changes, modifies, magnifies, augments, increases, in-
tensifies, inflates, moderates, dampens, diminishes, reduces, deflates, and so on, some effect
(of z) on y, one has offered an interactive argument.

5. Institutions seem most often to condition the impact of structural variables: for ex-
ample, interest, demographic, economic, party-system structure, and so on. We suspect that
this reflects some as-yet unstated general principle of institutional analysis.



tional and other environmental conditions determine the monitoring, en-
forcement, and other costs, C, principals must incur to force agents to
enact g(Z) instead of f(X). In such situations, the connection between the
realized policy, y, and the agent’s preferred policy function, y1, will depend
on C or some function of C, say, k(C). Similarly, the effect of the princi-
pal’s policy function, y2, on the realized policy will depend on C or some
function of C, say, [1 � k(C)]. This reasoning suggests that the realized
policy should be modeled as y � k(C) � f(X) � [1 � k(C)] � g(Z) with 0
� k(C) � 1 and k(C) weakly increasing (see, e.g., Lohmann 1992, on the
banks, governments, and inflation example). Thus, the effect on y of each
c � C generally depends on X and Z, and the effect of each x � X and of
each z � Z generally depends on C. That is, all factors that contribute to
monitoring and enforcement costs modify the effect on y of all factors to
which the principals and agents would respond differently, and, vice versa,
the effect of all factors that determine monitoring and enforcement costs
depends on all factors to which principals and agents would respond dif-
ferently.6 Most empirical models of principal-agent situations do not re-
flect this inherent interactivity.

For those who study individual or mass political behavior, opportuni-
ties to specify interactive hypotheses also abound. Scholars who argue
that the effects of some set of individual characteristics (e.g., partisanship,
core values, or ideology) depend on another set of individual characteris-
tics (e.g., race, ethnicity, or gender) are proposing hypotheses that can and
should be analyzed with interactive terms. Research questions that ask
how the impact of some experimental treatment or environmental context
(e.g., campaign or media communications) depends on the level of some
individual characteristic (e.g., political awareness) likewise imply interac-
tive hypotheses. Questions that explore how context (e.g., minority neigh-
borhood composition or news media coverage of an issue) conditions the
effect of some other predictor (e.g., racism) also reflect interactive hy-
potheses. Generally speaking, research questions that propose heterogene-
ity in how different types of individuals (or different microlevel units, even
more generally) respond to their environments and institutional (i.e.,
macrolevel) contexts can and should be modeled interactively.7

Interactions in Social Science 11

6. Franzese (1999, 2002) shows how to use nonlinear regression to mitigate the esti-
mation demands of such highly interactive propositions.

7. These last will also often imply spatial interdependence; see the following for
methodological issues implied: Franzese and Hays (2005), Beck, Gleditsch, and Beardsley
(2006), and contributions to Political Analysis 10(3). For multilevel contextual models, see
the section “Random-Effects Models and Hierarchical Models” in Chapter 5, and the con-
tributions to Political Analysis 13(4).



Interaction terms are widely used in statistical research in social sci-
ence, and, in many more cases, theories suggest that interactions should
be used although they are not. Despite their proliferation, some confu-
sion persists regarding how to interpret these terms. Accordingly, we
now provide practical advice to assist students and scholars to minimize
this confusion.

12 Modeling and Interpreting Interactive Hypotheses in Regression Analysis
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T H E O RY  T O  P R A C T I C E

In this chapter, we provide guidance for constructing statistical models
that map onto substantive theory. We discuss the implementation of

statistical analyses to test the theory, and we provide advice on inter -
preting empirical results.

Specifying Empirical Models to
Reflect Interactive Hypotheses

Theory should guide empirical specification and analysis. Thus, for in-
stance, empirical models of principal-agent and other shared-policy-
control situations should reflect the convex-combinatorial form, with its
multiple implied interactions, as described earlier. Theoretical models of
behavior that suggest that institutional or environmental contexts shape
the effect of individual characteristics on behaviors and attitudes should
likewise specify empirical models that reflect the hypothesized context
conditionality in interactions.

To facilitate discussion, we will provide empirical examples from a va-
riety of substantive venues. Our first empirical example comes from Gary
Cox’s Making Votes Count (1997). (More examples from other substan-
tive venues and illustrating interactions of other types of variables will ap-
pear later.) Cox’s justifiably acclaimed book makes several institutional
arguments in which some political outcome, y, say, the effective number
of parties elected to a legislature or the effective number of presidential
candidates, is a function of some structural condition, x, say, the number
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of societal groups created by the pattern of social cleavages (e.g., the ef-
fective number of ethnic groups), and some institutional condition, z, say,
the proportionality or district magnitude of the electoral system or the
presence or absence of a presidential runoff system. Theory in this case
very clearly implies that the relationship between y and x should be con-
ditional upon z and, conversely, that the relationship between y and z
should be conditional upon x. As Cox (1997) theorizes, for example, “A
polity will have many parties only if it both has many cleavages and has
a permissive enough electoral system to allow political entrepreneurs to
base separate parties on these cleavages. Or, to turn the formulation
around, a polity can have few parties either because it has no need for
many (few cleavages) or poor opportunities to create many (a constrain-
ing electoral system)” (206). (See, Amorim Neto and Cox 1997; Cox
1997; Ordeshook and Shvetsova 1994 for empirical implementation.)

The standard linear-interactive model can reflect the propositions that
x and z affect y and that the effects of x and of z on y each depend on
the other variable. One simple way to write this (compound) proposition
into a linear-regression model is to begin with a standard linear-additive
model expressing a relation from x and z to y, along with an intercept,
and then to allow the intercept and the coefficients on x and z each to
depend on the level of z and x:1

y � �0 � �1x � �2z � � (1)

�0 � �0 � �1x � �2z

�1 � 	1 � 	2z

�2 � 	3 � 	4x

Combining these equations, we may express the model of y for estima-
tion by linear regression in the standard linear-interactive manner:

y � �0 � �xx � �zz � �xzxz � � (2)

As originally expressed in (1), the coefficients in this linear-interactive
model (2) are �x � �1 � 	1, �z � �2 � 	3, �xz � 	2 � 	4. More impor -
tant, in this model, the effects of x and z on y depend on z and x, re -
spectively, as an interactive theory would suggest.

Theory or substance might suggest several alternative routes to this
same general model. For example, suppose we were to specify a system

1. We begin with the simplest case, where the effects of x and of z are deterministically
dependent on, respectively, z and x. Subsequently, we relax this assumption to discuss
probabilistic dependence (i.e., with error).
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of relationships in which the effect of x on y and the intercept (condi-
tional mean of y) depend on z:

y � �0 � �1x � � (3)

�0 � �0 � �1z

�1 � 	1 � 	2z

This is a common starting point for “multilevel” models in which
some individual (microlevel) characteristic, x, is thought to produce micro -
level outcomes or behaviors, y, although the mean of that outcome or be-
havior, �0, and the effect, �1, of that individual characteristic, x, may vary
across contexts, which are described by a macrolevel characteristic, z.
Combining these equations, we may express the following model for y:

y � �0 � �xx � �zz � �xzxz � � (4)

where �x � 	1, �z � �1, �xz � 	2.
Note that the models actually estimated in (2) and (4) are identical,

even though the theoretical/substantive stories told to derive the models
from (1) and (3) seem to differ.2 Each of these seemingly different theo-
retical stories yields the same mathematical model: the linear-interactive
model (2).3 This result demonstrates that, although the substance may
determine which of these arguments is most intuitive to express, the dis-
tinction cannot be drawn mathematically. This mathematical ambiguity
arises because the propositions being modeled are logically symmetric;
that is, these statements all logically imply each other, and, in that sense,
they are identical; they cannot be distinguished because they are not dis-
tinct. As Fisher (1988) writes, “prior theoretical specification is needed
to interpret [in this sense] regression equations with product terms”
(106). We concur but stress that the interpretive issues here are presen-
tational and semantic because the alternatives are logical equivalents.
These alternative theoretical stories may sound different in some sub-
stantive contexts, and some versions may seem more intuitive to grasp in
certain contexts and others in other contexts. However, they are not ac-
tually alternatives; they are all the same tale.

2. To complete the list: a model in which y is a linear-additive function of z and the ef-
fect of z and the intercept depends on x, or one where the effect of x depends on z or the
effect of z depends on x (and each effect may be nonzero when the other variable equals
zero), also produces this same linear-interactive regression model.

3. Note: the linear-interactive model is not the only model form that would imply that
the effects of x depend on z and vice versa, but, absent further theoretical elaboration that
might suggest a more specific form of interaction, additive linear-interactive models like (2)
are the logical, simple default in the literature.
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Alternatively, one could propose a substantive argument that the ef-
fect of x on y depends on z but that z matters for y only insofar as it al-
ters the impact of x and, in particular, z has no effect when x is equal to
zero (not present). This is a change in the theoretical account of the re-
lationship between the variables; it is a logically distinct argument, and
it produces a truly different equation to be estimated:

y � �0 � �1x � �

�1 � 	1 � 	2z

y � �0 � �xx � �xzxz � � (5)

where �x � 	1, �xz � 	2.
In this system of equations, we again see that z conditions the effect

that x has on y and vice versa. However, by theoretical claim and ensu -
ing model construction, z’s sole effect is to determine the effect of x on
y, and, in particular, movements in z have no effect on y when x is zero.4

Scholars will typically think of z in this scenario as the intervening vari-
able: intervening in x’s relationship to y. However, notice that just as a
value of x exists, namely, x � 0, where the effect of z is zero, a value of
z exists, namely, z � ��x/�xz, where the effect of x is zero. The substance
of the context at hand may suggest whether to conceive x � 0 or z �

��x/�xz, or, for that matter, some other value of x or z, as the base from
which to decide whether x or z is the one intervening in the other’s rela-
tionship with y. Mathematically that determination is once again arbi-
trary because, logically, all interactions are symmetric.5 Given this logi -
cal symmetry, x and z must necessarily both intervene in the other’s
relationship to y. In this sense, the language of one variable being the in-
tervening or moderating variable and the other being the one moderated
may be best avoided; if an interaction exists, then all variables involved
intervene or moderate in the others’ relations to y.

The preceding equations assume that the effect of x on y depends on
z and the effect of z on y depends on x deterministically, that is, without
error. This might seem odd, given that our model proposes that x and z
predict y only with error (hence the inclusion of the term �), but the sub-
sequent equations propose that the effect of x on y and of z on y each

4. We discuss this type of model further in the first section of chapter 4.
5. Mathematically, the proof of this logically necessary symmetry in all interactions is

simply

�f(x,z) �f(x,z)
�� � �� ��x �2f(x,z) �2f(x,z) �z� � � 
 f(x,z).

�z �x�z �z�x �x
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depend on the other variable without error. We can easily amend the lin-
ear-interactive model to allow a more logically consistent stochastic con-
ditioning of the effects of variables by the others’ levels thus:

y � �0 � �1x � �2z � �

�0 � �0 � �1x � �2z � �0

�1 � 	1 � 	2z � �1

�2 � 	3 � 	4x � �2

Combining these equations allows expressing y for regression analy-
sis in the now-familiar

y � �0 � �xx � �zz � �xzxz � �* (6)

where �* � � � �0 � �1x � �2z, �x � �1 � 	1, �z � �2 � 	3, �xz � 	2

� 	4.6

The composite residual �*in (6) retains zero expected value and non-
covariance with the regressors x, z, and xz provided that its components,
�, �0, �1, and �2, do so. These key assumptions of the classical linear-
 regression model (CLRM) ensure unbiasedness and consistency of ordi-
nary least squares (OLS) coefficient estimates. However, this compound
residual does not retain constant variance, since it waxes and wanes as a
function of x and z. This heteroskedasticity undermines the efficiency of
the OLS coefficient estimates and the accuracy of OLS standard errors.
In other words, if the conditionalities of the x and z relationships with y
themselves contain error, then the standard linear-interactive model has
heteroskedastic error even if the individual stochastic terms comprising
its compound residual are homoskedastic. Thus, OLS coefficient esti-
mates are unbiased and consistent but not efficient. The OLS standard-
error estimates, on the other hand, are incorrect,7 but, as we show later,
these problems are often easy to redress satisfactorily with familiar tech-
niques. We return to this technical concern in the section “Random-
 Effects Models and Hierarchical Models” in chapter 5, because this con-
cern often underlies calls for random-coefficient or linear-hierarchical

6. Note that the terms involving �1x and �2z can be removed from the expression for
the composite error, �*, and replaced by appending +�1 to the expression for �x and +�2 to
that for �z, to give another common expression of the random-coefficients/random-effects
model.

7. To be precise, OLS standard-error estimates, as estimates of the true variation across
repeated samples of the OLS coefficient estimates under the CLRM assumptions, are always
inefficient in the presence of any heteroskedasticity, and, when the heteroskedasticity is a
function of the regressors, as is the case here, they are biased and inconsistent as well.
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models. For now, we proceed assuming the researcher estimates a model
like (4) by OLS.

Let us return to our example of electoral systems, social cleavages,
and the number of parties or candidates to illustrate the preceding dis-
cussion. We follow Cox’s analysis of the effects of presidential-runoff
systems (Runoff ) and the effective number of ethnic groups in a society
(Groups) on the effective number of presidential candidates (Candidates)
that emerges in a presidential democracy.8 The theory suggests that the
impact of social cleavages on the effective number of candidates depends
on whether a runoff system is used and, symmetrically, that the impact
of the runoff system on the effective number of candidates depends on
the number of societal groups. (Recall that these are logically two sides
of the same proposition.) The confluence of a high number of social
cleavages and a runoff system is hypothesized to produce a high effective
number of presidential candidates, because the number of societal
groups increases the potential number of parties and the runoff system
attenuates the incentives for preelection coalition building between such
groups. Given this theoretical structure, we can specify the following
model for estimation:

Candidates � �0 � �GGroups � �RRunoff � �GRGroups

� Runoff � � (7)

The data set includes information from sixteen presidential democra-
cies in 1985.9 The dependent variable, Candidates, the effective number
of presidential candidates, ranges from 1.958 to 5.689, with a mean of
3.156 and a standard deviation of 1.202. The independent variable,
Groups, the effective number of ethnic groups in a society,10 ranges from
1 to 2.756, with a mean of 1.578 and a standard deviation of 0.630. The
independent variable, Runoff, indicates the presence or absence of a
runoff system for the presidential election; this dummy variable takes the
value of zero if the system does not employ runoffs and one if it does use

8. Effective numbers are simply size-weighted counts of items. The effective number
of social groups, for example, is (�n

i�1g2
i)

�1, where gi is the group i’s fraction of the popu-
lation. The effective number of candidates is (�n

i�1v2
i)

�1, where vi is candidate i’s fraction
of the vote total.

9. We selected this data set because it is freely available (at http://dodgson.ucsd
.edu/lij/pubs/) so researchers can easily replicate our results and because of its very man-
ageable size. The small N, however, makes finding any strong statistical significance rather
unlikely, but weak significance hardly hampers our pedagogical purposes.

10. To avoid some tiresome repetition, we henceforth drop the adjectives effective, al-
though they remain applicable.
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them. In this sample of sixteen presidential democracies, exactly half
have a runoff system. The OLS regression results appear in table 1.

How do we interpret these results? What do these estimated coeffi-
cients mean? The next section provides guidance on these questions.

Interpreting Coefficients from Interactive Models

In the simple linear-additive regression, y � �0 � �xx � �zz � �, the ef-
fect of the variable, x, on y is simply its coefficient, �x. When x rises by
one unit, ceteris paribus, y rises by �x. Likewise for z, its effect on y is its
coefficient, �z. In this case—and only in the purely linear-additive re -
gression case—the coefficient on a variable and the effect on the depen-
dent variable of a unit increase in that independent variable (ceteris
paribus and controlling for other regressors) are identical.

In interactive models, as in all models beyond the strictly linear-addi-
tive, this equivalence of coefficient and effect no longer holds. In an at-
tempt to cope with this change, current practice in interpreting interac-
tive effects often substitutes some vague and potentially misleading
terms, such as main effects and interactive effect, direct effects and indi-
rect effect, and independent effects and total effect, for the coefficients on

TABLE 1. OLS Regression Results, Number of
Presidential Candidates

Coefficient
(standard error)

p-Value

Ethnic Groups �0.979
(0.770)
0.228

Runoff �2.491
(1.561)
0.136

Ethnic Groups � Runoff 2.005
(0.941)
0.054

Intercept 4.303
(1.229)
0.004

N (degrees of freedom) 16 (12)
Adjusted R2 0.203
P � F 0.132

Note: Cell entries are the estimated coefficient, with stan-
dard error in parentheses, and two-sided p-level (probability
�T � � t) referring to the null hypothesis that � � 0 in italics.
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x and z in the first case and on xz in the second. Such terminology is usu-
ally unhelpful at best, misleading or incorrect at worst.11

Instead, we encourage researchers to recall that each variable involved
in the interaction terms of interactive models has multiple effects, not any
single, constant effect, such as might be given somehow by a single coef-
ficient, nor a main effect and an interactive effect, such as might be given
by some pair of coefficients, but multiple, different effects depending on
the levels of the other variable(s) with which it interacts. When a re-
searcher argues that the effect of some variable x on y depends on z, he
or she is arguing that x has different effects on y, depending on the spe-
cific values of z. In the interactive case, the effects of x on y are therefore
not any single constant, like the coefficient �x on x in the simple linear-
additive model. The effects of x on y vary. They depend on the coefficients
on x and xz, as well as the value of z. To restate the general principle: out-
side of the purely linear-additive model, coefficients are not effects. The
effect of x on y, as we elaborate subsequently, is the derivative, �y/�x, or
the difference/change, �y/�x, which will only equal the coefficient on x
by itself in the purely linear- additive case.

Terming one coefficient the main effect and another the interactive ef-
fect thus perilously confuses coefficients for effects. Substantively, there
may in fact be nothing whatsoever “main” or “direct” about the partic-
ular effect to which the coefficient on x actually does refer. Researchers
cannot appropriately refer to the coefficient on x as “the main effect of
x” or “the effect of x . . . independent of z” or “considered independ-
ently of z” or, certainly not, “controlling for z.” The coefficient on x is
just one effect x may have, namely, the effect of x at z � 0. That is, the
coefficient on x gives the estimated effect of a unit change in x, holding
z fixed at zero. We note that this zero value of z may have nothing at all
“main” about it. It may fall outside the range of what appears in the
sample, or it could even be logically impossible! The effect of x on y at z
� 0 is obviously not “independent of z”; in fact, it is connected with a
particular value of z. This effect of x on y when z � 0 is also a very dif-
ferent thing from the effect of x on y “controlling for z.” The simple lin-
ear-additive multiple-regression model estimates a single, constant “ef-
fect of x on y, controlling for z.” The linear- interactive model estimates
the effect of x on y as a function of z.

Our empirical example illustrates and clarifies these points. The esti-

11. Note that some of this terminology also refers to path-analytic models, which
specify that some variable x affects the level (rather than, or in addition to, the effect) of
some variable z that then determines y. This overlap in terminology provides even more
confusion for the researcher. 
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mated coefficient on Runoff (�̂R � �2.491) gives the estimated effect of
runoff elections on the number of presidential candidates for the specific
case where Groups takes a value of zero. But the number of societal
groups never takes the value of zero in the sample; in fact, the number
of ethnic groups in a society cannot logically equal zero. Thus, an inter-
pretation of �̂R, the estimated coefficient on Runoff, as the “main” effect
of a runoff system is nonsensical; far from a “main” effect, this is actu-
ally the effect at a value of ethnic heterogeneity that does not, and indeed
could not, exist.

If, however, Groups were rescaled to include a value of zero, for ex-
ample, by subtracting some constant value, such as the mean, and call -
ing the resulting variable Groups*, then the estimated coefficient �̂R*

would be the estimated effect of Runoff when the rescaled variable
Groups* takes the value of zero. This is assuredly logically possible and
in sample now, but the notion that the effect at this particular substan -
tive value of ethnic heterogeneity is somehow “main” would remain
strained and potentially misleading. That the effect of some variable
when its moderating variable happens to be at its mean should be called
a “main effect” while all the other effects at all the other logically per-
missible or empirically existent values are something other than “main”
seems an unnecessary and possibly misleading substantive imposition,
especially since the theoretical and substantive point of the interaction
model in the first place is that the effects of the interacting variables vary
depending on each other’s values. We return to this topic of mean-rescal-
ing interactive variables in the first section of chapter 4.

Symmetrically, the estimated coefficient �̂G, the coefficient on
Groups, refers to our estimate of the effect of the number of ethnic
groups when Runoff equals zero. This value does logically and empiri-
cally exist, and so the estimated value of �̂G � �0.979 tells us something
substantively relevant. It reports an estimate that, in a system without
runoffs, the number of ethnic groups has a negative impact on the num-
ber of presidential candidates. Specifically, an increase of 1 in the num -
ber of ethnic groups is empirically associated with a 0.979 reduction in
the number of presidential candidates, in systems without runoff elec-
tions. (We find this result substantively puzzling, but that is the estimate.)
Note, however, that the coefficient �̂G only tells part of the story—it only
reveals the estimated effect of Groups in one condition: when Runoff
equals zero.

The researcher who equates a coefficient in an interactive model to an
effect is thus treading on hazardous ground. At best, the researcher will be
telling a story about an effect that applies to only one of several possible
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conditions (e.g., when z � 0 or when z � z̄). At worst, the researcher will
be telling a story about an effect that applies in no logically possible con-
dition—an effect that is logically meaningless. In short, put simply, and re-
iterating this crucial point: outside the simplest purely linear-additive case,
coefficients and effects are different things.

We suggest two effective and appropriate methods of interpreting re-
sults from interactive models: differentiation (which requires working
knowledge of entry-level calculus) and differences in predicted values
(which does not).

Interpreting Effects through Differentiation

Consider the following standard linear-interactive regression model:

y � �0 � �xx � �zz � �xzxz � � (8)

The effects of an independent variable, x, on the dependent variable,
y, can be calculated by taking the first derivative of y with respect to x
(as suggested by, e.g., Friedrich 1982; Stolzenberg 1979). This is a direct
and simple means of identifying the effects of x on y or the effects of z
on y because first derivatives or first differences, �y/�x and �y/�z, or
�y/�x and �y/�z, are effects. One may, in fact, read �y/�x (or �y/�x), for
example, as “the change in y, �y (or �y), induced by a marginal (deriva-
tive) or unit (difference) increase in x, �x (or �x), all else held constant.”
Differentiation is a simple, reliable, methodical way of calculating inter-
active effects. To help it fulfill its promise of simplicity and to reduce the
tendency to induce mistakes, we provide a table of basic differentiation
rules in appendix A.

In the standard linear-interactive model (8), the first derivatives of y
with respect to x and z are

�y/�x � �x � �xzz (9)

�y/�z � �z � �xzx (10)

As (9) and (10) exemplify, the first derivative of (8) with respect to x
and z yields the conditional effect of those variables directly. Derivatives
are effects, whether in basic linear-additive regression models, when they
yield just the coefficient on the variable of interest, or in linear-interac -
tive models like (8), when they give expressions like (9) and (10) involv-
ing two coefficients and the other interacting variable. This generalizes
to any other model regardless of its functional form.
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The effect of x on y in an interactive model like (8) is �x � �xzz, which
reflects the conditional argument underlying that model. As noted earlier,
�x is merely the effect of x on y when z happens to equal zero, and it is
neither necessarily the “main” effect in any sense nor the effect “inde -
pendent of” or “controlling for” z. Nor, we now add, does �xz embody
the “interactive” effect of x or of z exactly, as often suggested. The coef-
ficient �xz indicates by how much the effect of x on y changes per unit in-
crease in z. It also indicates the logically and mathematically identical
amount by which a unit increase in x changes the effect of z on y. Neither
is precisely an effect. They are statements of how an effect changes: that
is, an effect on an effect. The sign and magnitude of �xz tell us how the
effect of x on y varies according to values of z. In an interactive model,
indeed in any model, the effect of a variable, x, on y is �y/�x. Here that
effect is �x � �xzz. One cannot distinguish some part of this conditional
effect as main and another part as interactive.

Returning to our empirical example of the interaction between insti-
tutional structure and social cleavages in determining the number of
presidential candidates, we are now prepared to interpret the results
using differentiation. Recall the results from our OLS regression:12

Candidates � 4.303 � 0.979(Groups) � 2.491(Runoff ) 

� 2.005(Groups � Runoff ) (11)

Applying (9) and (10), we see that

�ŷ/�G � �0.979 � 2.005(Runoff ) (12)

�ŷ/�R � �2.491 � 2.005(Groups) (13)

Thus, the effect of societal groups on the number of presidential can-
didates varies with the presence or absence of a runoff, and the effect of
a runoff on the number of presidential candidates varies with the num -
ber of ethnic groups in society. These conditional effects can be easily cal-
culated by inserting substantively relevant values for the variables of in-
terest into equations (12) and (13).

Recall that Runoff takes only two values: zero in the absence and one
in the presence of a runoff system. Hence, we use (12) to recalculate the

¨

12. Although, technically, one cannot strictly differentiate with respect to noncontin-
uous variables, such as dummy variables, one can proceed ignoring this technicality with-
out being misled. (Do remember, however, that marginal increases cannot actually occur,
only unit increases from zero to one can.) Alternatively, one can calculate differences in pre-
dicted values, which we discuss next. For more detail, see note 17.
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conditional effect of Groups on the number of candidates for these two
substantively relevant values of Runoff. When Runoff � 0, �ŷ/�G �

�0.979 � 2.005 � 0 � �0.979. When Runoff � 1, �ŷ/�G � �0.979 �
2.005 � 1 � 1.026. In the absence of a runoff, the estimated effect of
ethnic groups is negative; in the presence of a runoff, the estimated effect
of ethnic groups is positive. (The “Linking Statistical Tests with Interac-
tive Hypotheses” section of this chapter discusses the standard errors
and statistical significance of these estimated effects, which, like the ef-
fects themselves, vary with the level of the conditioning variable.)

Symmetrically, we can calculate the conditional effect of Runoff on
the number of presidential candidates by inserting substantively relevant
values of Groups into (13). Recall that Groups ranges from 1 to 2.756
in our data set. We should present the estimated effects of Runoff over a
substantively revealing set of values for Groups: for example, over the
sample range of values of Groups; or at evenly spaced intervals starting
from the sample minimum to some substantively meaningful and reveal-
ing high value; or at the minimum, mean, and maximum; or at the mean,
the mean plus and the mean minus a standard deviation or two.

To take one of these options, we calculate conditional effects when
Groups ranges from 1 to 3, at evenly spaced intervals of 0.5, which
yields the following estimated conditional effects:13

When Groups � 1: �ŷ/�R � �2.491 � 2.005 � 1 � �0.486

When Groups � 1.5: �ŷ/�R � �2.491 � 2.005 � 1.5 � 0.517

When Groups � 2: �ŷ/�R � �2.491 � 2.005 � 2 � 1.520

When Groups � 2.5: �ŷ/�R � �2.491 � 2.005 � 2.5 � 2.522

When Groups � 3: �ŷ/�R � �2.491 � 2.005 � 3 � 3.525

At the sample minimum (when the society has only one ethnic
group), a runoff system has a negative effect on the number of presi -
dential candidates (which, again, seems substantively odd), but as 
the number of ethnic groups rises, the runoff begins to affect the num-
ber of presidential candidates positively (which is more sensible). The
size of the effect grows as ethnic groups become more numerous (also
sen sible). Again, the standard errors of these estimated effects and
whether the effects are statistically significant are matters we will dis-
cuss subsequently.

13. Although the sample maximum is 2.756, Ethnic Groups does extend beyond this
value in some of the nonpresidential systems that Cox (1997) analyzes. 
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Interpreting Effects through Differences in Predicted Values

A second strategy for examining the effects of x and z on y consists of
examining differences in predicted values of y for logically relevant and
substantively meaningful values of x and z. This strategy does not re-
quire the researcher to have any knowledge of calculus; it is a bit more
tedious but quite serviceable in its own right. Predicted values of y, de-
noted as ŷ, can be calculated by substituting the estimated values for the
coefficients along with logically relevant and substantively revealing val-
ues of the covariates of interest into the theoretical model (equation (8))
and substituting in estimated coefficient values:

ŷ � �̂0 � �̂xx � �̂zz � �̂xzxz (14)

We can now calculate ŷ at varying values of x (between, say, xa and
xc) while holding z constant at some meaningful value (e.g., its mean
value or some other substantively relevant value; if z is a dummy, for ex-
ample, zero and one are meaningful). By doing so, the researcher can cal-
culate how changes in x (from xa to xc) cause changes in ŷ (from ŷa to
ŷc). Recall that as x changes from xa to xc , while z is held at some mean-
ingful value, say, z0, this also implies that xz changes from xaz0 to xcz0.
The predicted values, ŷa and ŷc , can be calculated as follows:

ŷa � �̂0 � �̂xxa � �̂zz0 � �̂xzxaz0 and  

ŷc � �̂0 � �̂xxc � �̂zz0 � �̂xzxcz0

The change in predicted values can be calculated as the difference be-
tween ŷa and ŷc :

ŷc � ŷa � �̂0 � �̂xxc � �̂zz0 � �̂xzxcz0 � (�̂0 � �̂xxa � �̂zz0

� �̂xzxaz0) ŷc � ŷa � �̂x (xc � xa) � �̂xzz0(xc � xa) (15)

Symmetrically, the researcher can identify how ŷ moves with changes
in z (and xz) when x is held at some meaningful value.

In our example, we can examine how the predicted number of presi-
dential candidates changes as we increase the number of ethnic groups in
the presence and in the absence of runoff elections:

Candidates � 4.303 � 0.979(Groups) � 2.491(Runoff ) 

� 2.005(Groups � Runoff )

When Groups � 1 and Runoff � 0, we calculate the predicted number
of candidates, ŷ as

(ŷ � Groups � 1, Runoff � 0) � 4.303 � 0.979 � 1 � 2.491 � 0 

� 2.005 � 1 � 0 � 3.324

¨
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Table 2 presents the predicted number of candidates, as Groups ranges
from one to three, when Runoff takes values of zero and one.

From such a table, the researcher can discern how the independent
variables, Groups and Runoff, influence the predicted dependent variable,
Candidates. By looking across single rows, we see the effect of the pres-
ence of a runoff system at the given number of Groups associated with
each row. In the first row, for example, when the value of Groups is at its
minimum (one), a runoff system has a small and negative effect, decreas-
ing the number of parties by �0.486 (that same substantively odd result
again). When the value of Groups is at a higher value, say, 2.5 (row 4),
the impact of a runoff system is larger in magnitude and positive: in a
polity with 2.5 social groups, a runoff system is estimated to increase the
number of presidential candidates by (a substantively sensible) 2.523.

By looking down single columns, we see the effects of changes in the
number of ethnic groups in the absence or in the presence of a runoff sys-
tem. In the absence of a runoff system, a rise in the number of ethnic
groups from, say, one to three coincides (oddly) with a decline in the
number of presidential candidates from 3.324 to 1.366. In the presence
of a runoff system, however, a rise in the number of ethnic groups from,
say, one to three coincides (sensibly) with an increase in the number of
presidential candidates (from 2.838 to 4.891). Subsequently, we address
standard errors for these estimated changes and whether they are statis-
tically distinguishable from zero.

Interpreting Interactive Effects Involving 
Different Types of Variables

Our advice on interpretation applies generally across essentially14 all
types of variables that scholars might analyze—dummy variables, discrete

TABLE 2. Predicted Number of Presidential Candidates

Runoff � 0 Runoff � 1

Groups � 1 3.324 2.838
Groups � 1.5 2.835 3.351
Groups � 2 2.345 3.865
Groups � 2.5 1.855 4.378
Groups � 3 1.366 4.891

14. Ordinal independent variables mildly complicate interpretation of linear-regres-
sion estimates, whether of purely linear-additive or of linear-interactive form, because lin-
ear-regression treats all independent-variable information as cardinal. In practice, re-
searchers often assume ordinal variables to give cardinal, or close enough to cardinal,
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variables, continuous variables, and so on—and any nonlinear transfor-
mations (such as ln(x) or x2, or {v � 1 if x � x0, v � 0 if x 
 x0}). Fur-
thermore, virtually all permutations of interactions between these types of
variables are logically and empirically possible,15 and all can be inter-
preted using one or both of our approaches. One need not learn different
interpretational techniques for each different variable and interaction
type; the preceding discussion fully suffices, as we illustrate next. (Opti-
mal presentational efficacy will often suggest different graphical and/or
tabular approaches for different applications as the next section suggests
and illustrates.)

Our first empirical example illustrates one of these possible permuta-
tions: an interaction between a dummy variable (Runoff) and a continu-
ous variable (Groups). To illustrate more of the rich range of possibili-
ties, we now introduce some additional empirical cases.

Our second example derives from public-opinion research into par-
tisan and gender gaps in support for social welfare (e.g., Box-Steffens-
meier, De Boef, and Lin 2004; Shapiro and Mahajan 1986). Theory sug-
gests that social-welfare attitudes derive from a set of individual-level
characteristics, such as partisan orientation, ideology, gender, race, and
income, and that the effect of one or more of these characteristics, such
as partisanship, might depend on some other characteristic, such as gen-
der. Partisanship is strongly related to support for social-welfare pro-
grams; for example, in the United States, Republicans are less support-
ive of these programs than Democrats. Gender is also strongly related
to support for social-welfare programs, with females generally more
supportive than males. However, if partisan and gender influences are
complements or substitutes in opinion formation regarding social wel-
fare, then the effect of partisanship among females will differ from that
among males. Symmetrically, the effect of gender will differ among
 Republicans compared with the gender effect among Democrats. A

information. Nominal variables complicate linear-regression interpretation similarly. For
binary nominal (i.e., dummy) variables, the researcher need only remember the variable’s
binary nature when considering substantively meaningful ranges of or changes in those
variables. Since a unit change is the only change possible, whether that dummy offers nom-
inal, ordinal, or cardinal information does not alter the mechanics of interpretation. For
nominal variables with more than two categories, increases or decreases in a variable’s
value do not correspond to any substantive notion of increase or decrease, and so their di-
rect use in linear regression, again whether of purely linear-additive or of linear-interactive
form, is not even approximately appropriate. For use in regression analysis, researchers
would first decompose such multinomial variables into sets of binary variables, each indi-
cating one of the categories.

15. The one exception is that a dummy variable interacted with itself just gives itself
back, and so x and x2 are identical if x is a dummy.
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standard linear-interactive model like (8) would enable a test of such
theoretical propositions.

We analyze such a model using data from the 2004 American Na-
tional Election Studies. The dependent variable is an additive index of
support for the social-welfare state.16 The independent variables are an
indicator (dummy) for gender (one if female, zero if male), an indicator
for partisanship (one if Republican, zero if Democrat; with all others ex-
cluded for ease of exposition), and the interaction of those two variables.

Opinion � �0 � �FFemale � �RRepublican � �FRFemale

� Republican � � (16)

The OLS results appear in table 3. Note that this analysis features an
interaction between two dummy variables. Differentiation (derivatives)
will produce the correct expressions for the conditional effects, but cal-
culating differences in predicted values might make more intuitive sense
given the binary nature of the variables.17 As such, these OLS results can
be easily interpreted by comparing the predicted support for the social-
welfare state for each of the four categories supplied by the multiplica-
tion of the two binary variables (male Democrat, female Democrat, male
Republican, and female Republican).

The predicted values in table 4 suggest that there is little difference in
the social-welfare support of male and female Democrats but that a gen-
der gap does exist in support for social welfare between male and female
Republicans. The gender gap is thus contingent upon partisanship. Con-

16. We provide this very simple example for pedagogical purposes; a more fully spec-
ified model would of course be more compelling. The dependent variable is compiled from
support for services and spending; government provision of jobs and a standard of living;
and support for federal spending on welfare programs, social security, public schools, child
care, and assistance to the poor, rescaled to range from zero (least supportive) to one (most
supportive).

17. Recall that derivatives are the limit of �y/�x as �x approaches zero. For a dichoto-
mous variable, this is intuitively unappealing; given that the variable takes only two dis-
crete values, 0 and 1,  �x can only be 1, 0, or �1. However, as Greene (2003) notes, “The
computation of the derivatives of the conditional mean function [i.e., the regression equa-
tion] is useful when the variable in question is continuous and often produces a reasonable
approximation for a dummy variable” (676). Indeed, the differentiation method will pro-
duce the correct mathematical formula for the conditional effects of a marginal change in
x, and so the only issue here involves the meaningfulness of a marginal change. For linear
interactions, one can simply determine the formula for the conditional effect by differenti-
ation and then consider only discrete changes in the conditioning variable. For nonlinear
interactions, however, the amount by which the conditional effect changes as the indicator
or other discrete conditioning variable increases by one will not be constant over that unit
range, and so the effect of a marginal change is not as substantively interesting and the dif-
ference method is more revealing. 
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versely, partisanship has a larger effect among men than women; male
Republicans and male Democrats are farther apart than female Republi-
cans and female Democrats. The degree of partisan polarization is con-
tingent upon gender. Subsequently, we address the statistical uncertainty
of these estimates.

Other interactions may involve the product of two continuous vari-
ables. Our third empirical example considers the duration of parliamen-
tary governments and features this type of interaction. The dependent
variable is the average duration of governments in the post–World War
II era, in months, and takes values between 11 and 45.1. We model it as
a function of the postwar average number of parties in government (NP),
which ranges from 1 to 4.3; the postwar average parliamentary support
for government in the legislature (i.e., the percentage of lower house

TABLE 3. OLS Regression Results, Support
for Social Welfare

Coefficient
(standard error)

p-Value

Female �0.0031
(0.0144)
0.828

Republican �0.2205
(0.0155)
0.000

Female � Republican 0.0837
(0.0214)
0.000

Intercept 0.7451
(0.0110)
0.000

N (df ) 1,077 (1,073)
Adjusted R2 0.223
P � F 0.000

Note: Cell entries are the estimated coefficient, with
standard error in parentheses, and two-sided p-level
(probability �T � � t) referring to the null hypothesis
that � � 0 in italics.

TABLE 4. Predicted Support for Social Welfare

Democrats Republicans
(Republican � 0) (Republican � 1)

Males (Female � 0) 0.745 0.525
Females (Female � 1) 0.742 0.605
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seats held by the governing party or parties) (PS), which ranges from
41.1 to 80.4; and the level of party discipline (PD), an indicator for high
levels of party discipline.18 We specify an interaction between the num-
ber of parties in government and the parliamentary support for govern-
ment, with the idea that as the degree of support for the governing party
increases, the effect of the number of parties in government on the dura-
tion of government will likely decline (and vice versa). The term PD
serves as a control; later we expand this model to illustrate other issues.
Here, we estimate the following model:

Government Duration � �0 � �npNP � �psPS � �nppsNP � PS

� �pdPD � � (17)

The OLS results appear in table 5. Both differentiation and differ-
ences in predicted values are useful in interpreting the results of an analy-
sis featuring an interaction between two continuous variables. Differen-
tiating, the effect of NP on the duration of governments is

�ŷ/�NP � �̂np � �̂nppsPS � �31.370 � 0.468(PS)

The estimated coefficient �̂np � �31.370 suggests that the effect of the
number of governing parties on government duration is �31.370 when
PS � 0, but setting parliamentary support to zero is a substantively mean-
ingless value, thus reinforcing our warning that coefficients are not the
same as effects in the linear-interactive model. Increases in parliamentary
support attenuate this negative effect of the number of parties on govern-
ment duration (as hypothesized) until parliamentary support reaches a
level of 67.02. At this point, the effect has reached zero: �ŷ/�NP � 0.
When parliamentary support exceeds 67.02, the effect of the number of
parties on government duration becomes positive. A positive effect seems
substantively odd until we consider that only grand coalitions encom -
passing all or most of parliament would typically exceed such a high level
of parliamentary support;19 grand coalitions including more parties intu-
itively might indeed last longer than grand coalitions of fewer parties,
which perhaps exclude some, thereby violating such coalitions’ justifying
principle. This example provides an interesting case where the effect of
some variable x is negative in one range of z, crosses zero, and then be-
comes positive in another range of z. It also illustrates the importance of

18. The dummy variable PD reflects our own coding of party discipline in these
democracies.

19. In the sample, Austrian and especially Swiss governments exceed 67 percent aver-
age parliamentary support appreciably, and governments in Luxembourg do so slightly. Re-
inforcing the explanation in the text, Swiss governments serve terms that are not deter-
mined by standard parliamentary processes.
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considering conditional effects at substantively meaningful values in the
sample.

Similarly, the effect of the degree of parliamentary support on govern-
ment duration is

�ŷ/�PS � �̂ps � �̂nppsNP � �0.586 � 0.468(NP)

The estimated effect of PS on government duration is negative when
NP assumes a zero value (but this, too, is a substantively meaningless
value in this example). At the meaningful minimum value of NP � 1, the
estimated effect of PS is near zero, which is substantively sensible; single-
party governments tend to last to term, regardless of their margin. The
conditional effect of parliamentary support on government duration
crosses zero when NP � 1.25 and is increasingly positive as NP increases
further. Governments tend to endure longer as their parliamentary sup-
port increases, and this is especially so for multiparty governments, likely
because governments of more parties are more easily fractured by events
and circumstances and so have greater need of greater parliamentary
support to survive the vicissitudes of coalition politics.

As table 6 exemplifies, these results can be interpreted equivalently by

TABLE 5. OLS Regression Results, Government Duration:
Simple Linear-Interaction Model

Coefficient
(standard error)

p-Value

Number of Parties (NP) �31.370
(11.345)

0.013
Parliamentary Support (PS) �0.586

(0.454)
0.214

Number of Parties � Parliamentary Support 0.469
(NP � PS) (0.186)

0.022
Party Discipline (PD) 9.847

(3.204)
0.007

Intercept 59.273
(26.455)

0.039

N (df ) 22 (17)
Adjusted R2 0.511
P � F 0.002

Note: Cell entries are the estimated coefficient, with standard error in
parentheses, and two-sided p-level (probability �T � � t) referring to the
null hypothesis that � � 0 in italics.
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comparing the predicted government durations at varying meaningful
levels of NP and PS, while holding any other variables in the model (PD
in this case) also at substantively meaningful values (e.g., the sample
mean or mode; in this case, we hold PD to a value of one).

Reading down the first column of calculated values, one sees a very
modestly negative (i.e., near zero) estimated effect of PS under single-
party government; across the entire forty-point sample range of PS,
government duration declines by only 4.71 months (from 33.05 to
28.34). However, this effect intuitively reverses sign and grows sub -
stantially as the number of governing parties increases. When govern-
ments average three parties, predicted duration increases by a substan-
tial 32.78 months as PS expands from its sample minimum 40 to
maximum 80 percent. Reading across each of the rows, we see the esti-
mated effects of the number of governing parties at given levels of par-
liamentary support. Intuitively, increases in NP are associated with de-
clines in government duration over most values of governing support
(although they are associated with longer government durations at the
very high values of PS associated with grand coalitions). Also intu-
itively, these deleterious effects of NP are greatest where parliamentary
support is weakest. Subsequently, we address the statistical uncertainty
of these estimates.

Our approaches for interpreting interaction terms also apply when
the interacted variables have been nonlinearly transformed, such as
squared terms (a special case of linear interaction where a variable in
essence interacts with itself so that its effect depends on its own level),
higher order polynomials, and logs. Such nonlinear transformations also
render interpretation of estimated effects from simple examination of es-
timated coefficients very difficult and again highlight the utility of differ-
entiation or differencing for interpreting regression analyses employing
interaction terms.

Consider the case when a researcher believes that the effect of some
variable, x, depends on the level of that variable x. One way to model

TABLE 6. Predicted Government Duration

NP � 1 NP � 2 NP � 3 NP � 4

PS � 40 33.05 20.42 7.79 �4.84
PS � 50 31.87 23.93 15.99 8.05
PS � 60 30.70 27.44 24.18 20.93
PS � 70 29.52 30.95 32.38 33.81
PS � 80 28.34 34.46 40.57 46.69

Note: Predicted values are calculated at given values, setting PD � 1.
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this proposition is to include a quadratic, or squared term, x2, that is, the
interaction of x with itself. Researchers have applied this type of inter -
action in several domains: the effect of age is modeled as quadratic in
studies of political participation; the effect of time elapsed or remaining
is modeled as quadratic in studies of the dynamics of political cam-
paigns; loss functions in many rational-choice models take quadratic
form, and so on. Generically, such quadratic models might appear as

y � �0 � �x1x � �x2x2 � � (18)

and specify parabolic (hump-shaped, convex or concave) relations of x
and y. As always, the effect of x on y can be calculated through differen-
tiation as

�y/�x � �x1 � 2�x2x (19)

or by differencing predicted values of y as x moves from xa to xc:

ŷc � ŷa � �̂0 � �̂x1xc � �̂x2xc
2 � (�̂0 � �̂x1xa � �̂x2xa

2) 

� �̂x1(xc � xa) � �̂x2(xc
2 � xa

2) (20)

Figure 1 demonstrates how these parabolic relationships, and the as-
sociated marginal effects, look under the four possible combinations of

Fig. 1.  Quadratic terms in linear-regression models
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positive and negative coefficients on the linear and quadratic terms, �x1

and �x2, respectively, across the positive and negative value range of x.
The effect of parliamentary support on government duration, for ex-

ample, might depend on the level of parliamentary support itself in this
way. One might well expect an additional 10 percent support to con-
tribute less to extending a government’s duration if that increase is from
75 percent to 85 percent than if it is from 45 percent to 55 percent.
Table 7 shows the estimation results of a simple model to evaluate this
possibility.

Given the signs of the coefficients on PS and PS2, negative and posi-
tive, respectively, and the strictly positive values of PS, ranging from
about 40 percent to 80 percent, this example will resemble the lower left
quadrant of figure 1. Figure 2 plots the estimated effect line (calculated
using (19)) and predicted government duration as a function of PS. (Sub-
stantively, the estimated relationship seems odd and intriguing.)

Another commonly used nonlinear transformation is the natural log-
arithm, ln(x), which is often used when researchers want to allow the
marginal effect of x to decline at higher levels of x as we have suggested
here regarding the effect of parliamentary support on government dura-
tion. Common examples include the natural logs of dollars (e.g., budg-
etary outlays, gross domestic product [GDP], campaign spending, or per-
sonal income), of population or population density, or of elapsed time
(e.g., milliseconds for response latencies or other units such as hours or

TABLE 7. OLS Regression Results, Government
Duration: Quadratic-Term Model

Coefficient
(standard error)

p-Value

Parliamentary Support (PS) �2.734
(2.061)
0.200

Parliamentary Support, squared (PS2) 0.0257
(0.017)
0.142

Intercept 95.20
(62.44)

0.144

N (df ) 22 (19)
Adjusted R2 0.158
P � F 0.075

Note: Cell entries are the estimated coefficient, with standard er-
ror in parentheses, and two-sided p-level (probability �T � � t) refer-
ring to the null hypothesis that � � 0 in italics.
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days). In each of these cases, researchers will often expect the marginal
effect of a unit increase in x to be greater at lower values of x and to di-
minish as x itself increases. In a linear-additive model, the log of x relates
linearly to y, while x relates nonlinearly to y. The log transformation can
also be included in the linear-interactive model. Consider, for example, a
model including the natural log of parliamentary support interacted with
the number of governing parties, controlling for party discipline:

Government Duration � �0 � �npNP � �ln(ps) ln(PS) � �npln(ps)NP

� (ln(PS)) � �pdPD � � (21)

Table 8 gives the estimation results for this model. The slightly higher
adjusted R2 of this model and the generally greater significance of its co-
efficient estimates compared with the model in table 5 suggest that this
model with diminishing government-duration returns to parliamentary
support is somewhat superior. The effect of parliamentary support on
government duration in this model can be calculated by differentiating
with respect to PS: �GD/�PS � (�ln(ps) � �npln(ps)NP)/PS.20 Differentiating

Fig. 2.  Predicted Government Duration by Parliamentary Support for Govern-
ment, quadratic model

20. Recall that �(ln x)/�x � 1/x and the chain rule for nested functions specifies
�f(g(x))/�x � �f(g)/�g � �g(x)/�x. For a model, y � �0 � �ln(x)ln(x) � �zz � �ln(x)zln(x) �
z, the marginal effect of x is 

�y/�x � (�ln(x) � �ln(x)zz)(�ln(x)/�x) � (�ln(x) � �ln(x)zz)(1/x) 

Please see appendix A for further description of these differentiation rules.



36 Modeling and Interpreting Interactive Hypotheses in Regression Analysis

with respect to NP yields its conditional effect on government duration:
�GD/�NP � �np � �npln(ps) ln(PS).

Note that, befitting the diminishing returns specified for PS, the pre-
dicted values will vary depending upon the values of PS selected for the
calculations. Differences in predicted values also remain straightforward
to calculate.21 Figure 3 shows one informative way to present these esti-
mation results, plotting the predicted government duration as a function
of parliamentary support at a few substantively revealing levels of the
number of governing parties. (Party discipline is held fixed at one (high)

21. Specifically, the difference in predicted values of ŷ, as x increases from xa to xc , is

ŷc � ŷa � �̂0 � �̂ln(x) ln(xc) � �̂zz � �̂ln(x)z ln(xc) � z � (�̂0 � �̂ln(x) ln(xa) � �̂zz

� �̂ln(x)z ln(xa) � z)

� �̂ln(x) ln(xc) � �̂ln(x) ln(xa) � �̂ln(x)z ln(xc) � z � �̂ln(x)z ln(xa) � z

� �̂ln(x) ln(xc /xa) � �̂ln(x)z ln(xc /xa) � z

� ln(xc /xa)(�̂ln(x) � �̂ln(x)zz)

TABLE 8. OLS Regression Results, Government
Duration: Log-Transformation Interactive Model

Coefficient
(standard error)

p-Value

Number of Parties (NP) �136.97
(48.984)

0.012
ln(Parliamentary Support) (ln(PS)) �43.410

(27.417)
0.132

Number of Parties � ln(Parliamentary 32.710
Support) (NP � ln(PS)) (11.956)

0.014
Party Discipline (PD) 9.960

(3.172)
0.006

Intercept 201.41
(111.16)

0.088

N (df ) 22 (17)
Adjusted R2 0.520
P � F 0.002

Note: Cell entries are the estimated coefficient, with standard error
in parentheses, and two-sided p-level (probability �T � � t) referring to
the null hypothesis that � � 0 in italics.
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in fig. 3.) The figure reveals the essentially flat relationship between par-
liamentary support and government duration for single-party govern-
ments; the generally deleterious effects of the number of parties in gov-
ernment, especially at lower levels of parliamentary support; and the
increasing effect of parliamentary support at higher numbers of govern-
ing parties. It also reveals the diminishing-returns relation of parliamen-
tary support to government duration imposed by the log transformation.
This concavity becomes more noticeable when the num ber of governing
parties is greater, that is, when the effects of support are greater.

Threshold and spline (a.k.a. slope-shift) models represent another
class of independent-variable transformations commonly used in combi-
nation with interaction terms. Suppose a researcher thought that the ef-
fect of some independent variable x changed sign or magnitude beyond
some particular value, x0. For example, the effect of years of education,
YE, on a person’s income, Inc, might shift at certain numbers of years
representing the passing of key milestones, say, at sixteen years (typical
college graduation). Up to that point, the accumulated years represent
prebaccalaureate education; beyond it they represent some branch of ad-
vanced professional training. One way to specify an empirical model re-
flecting such a proposition would be to create a new indicator variable,
call it PB for postbaccalaureate, equal to one if YE 
 16 and zero if YE
� 16. To allow the effect of YE to shift at year sixteen and above, we

Fig. 3.  Predicted Government Duration by Parliamentary Support for Govern-
ment, log-transformation model
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would want to interact YE with this transformation of itself, PB, to yield
the following model:

Inc � �0 � �1YE � �2YE � PB � �3PB � � (22)

This model has a discontinuity at YE � 16, and so using the difference
method will prove more intuitive. (In fact, the function is not differen-
tiable at YE � 16.) From the difference method, then, we see exactly
how the effect of income in this model of adding a year of education de-
pends on whether that year is one of the first fifteen, the sixteenth, or be-
yond the sixteenth.

For values of YE � 15 (where an additional year of schooling would
not activate the threshold of PB), a one-unit shift in schooling from YEa

to YEc would imply a �1 shift in income:

�Inc � �0 � �1YEc � �2YEc � 0 � �3 � 0 � (�0 � �1YEa

� �2YEa � 0 � �3 � 0)

�Inc � �1

For values of YE such that 15 � YE � 16 (where the additional year
of schooling activates the threshold of PB), a one-unit shift in schooling
from YEa to YEc would imply a �1 � �2YEc � �3 shift in income:

�Inc � �0 � �1YEc � �2YEc � 1 � �3 � 1 � (�0 � �1YEa

� �2YEa � 0 � �3 � 0)

�Inc � �1 � �2YEc � �3

For values of YE 
 16 (where the additional year of schooling does
not change the value of PB), a one-unit shift in schooling would imply a
�1 � �2 shift in income:

�Inc � �0 � �1YEc � �2YEc � 1 � �3 � 1 � (�0 � �1YEa

� �2YEa � 1 � �3 � 1)

�Inc � �1 � �2

In this slope-shift or threshold model, the prebaccalaureate piece of
the income-education relation may not adjoin the postbaccalaureate
piece; rather, a discontinuous jump may occur at the point. To force the
segments to link continuously requires a spline model that simply re-
gresses income on YE and YE* � YE � 16 for YE 
 16 and 0 otherwise.
This general approach to slope-shift model specification and interpreta-
tion extends intuitively to any number of discontinuous or splined-con-
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tinuous slope shifts (see Greene 2003, secs. 7.2.4–75, pp. 120–22, for fur-
ther discussion).22

Differentiation and/or differencing thus render calculation of the es-
timated effects of x on y straightforward in any linear-regression model,
however the independent variables may have been transformed and in
whatever combinations they may interact. The section “Nonlinear Mod-
els” in chapter 5 discusses interpretation of interaction terms in nonlin-
ear models, in which these same techniques apply.

Chained, Three-Way, and Multiple Interactions

Interactions involving more than two variables are also possible, of
course, and may often be suggested theoretically. Generically, the effect
of some x on y could depend on two (or more) other variables, w and z
(etc.), as in this model:

y � �0 � �xx � �zz � �ww � �xzxz � �xwxw � � (23)

By differentiation, the effects of x, w, and z are �y/�x � �x � �xzz �

�xww, �y/�w � �w � �xwx, and �y/�z � �z � �xzx, respectively. In our
government-duration analysis, for example, one might well conjecture
that party discipline, that is, parties’ internal strategic unity, would as
likely moderate the effects of the number of governing parties on gov -
ernment duration as would parliamentary support. A linear-interactive
specification that could entertain this possibility would be

Government Duration � �0 � �npNP � �psPS � �pdPD

� �nppsNP � PS � �nppdNP � PD � � (24)

Interpretation of estimated conditional effects can once again proceed
equally by differences or derivatives: �GD/�NP � �np � �nppsPS �

�nppdPD, �GD/�PS � �ps � �nppsNP, and �GD/�PD � �pd � �nppdNP,
again safely ignoring the binary nature of PD in deriving these expres-
sions for the conditional effects (but remembering it when considering at
what values of PD or for what magnitude change in PD to calculate
those conditional effects). This sort of asymmetric model, in which one
variable (here NP) modifies the effects of several others (here PD and PS)
or, equivalently, has its effect modified by several others (perhaps the

22. The model could equivalently be expressed as Inc � �0 � �1YE � (1 � PB) �
�2YE � PB � �3PB � �. The one-unit shift at YE � 15 would still imply a �1 shift in in-
come. The one-unit shift at 15 � YE � 16 would imply a ��1YEa � �2YEc � �3 shift in
income, and the one-unit shift at YE 
 16 would imply a �2 shift in income.
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more intuitive way to express it in this substantive case), but in which
those others do not condition each other’s effects, might be termed a
“chained-interaction” model.23

Substantively in this example, a model in which NP has its effects on
government duration moderated by PD and PS certainly makes sense,
but the first column of results in table 9 gives little empirical support for
this chained specification, compared with the simpler model in table 5.
However, we might also expect PD and PS, the missing pairwise inter -
action, to condition each other’s government-duration effects. The dura-
bility benefits of extra seats of parliamentary support should logically de-
pend on the reliability of those seats’ votes for the government, that is,
on party discipline. We call an empirical model like the one this suggests,
in which the effect of each variable depends on each of the others, the
complete “pairwise-interaction” model, which here just adds that one
further interaction term, PD � PS, to the model:

Government Duration � �0 � �npNP � �psPS � �pdPD

� �nppsNP � PS � �nppdNP � PD

� �pdpsPD � PS � � (25)

Differentiation, as always, suffices to calculate the conditional effects
in this model:

�GD �GD
� �np � �nppsPS � �nppdPD,    � �ps � �nppsNP � �pdpsPD,

�NP �PS

�GD 
� �pd � �nppdNP � �pdpsPS

�PD

Table 9 also presents the estimation results for this pairwise-interac-
tion model, which has stronger empirical support, although the diffi-
culty of estimating this many coefficients,24 especially on such correlated
regressors, in just twenty-two observations is also becoming evident in
the standard errors of those coefficient estimates (perhaps not so much
or in the same way regarding the estimated effects but we are deferring
for now the discussion of the statistical certainty of conditional-effect
estimates).

Finally, one might push even further along these lines to suggest that
not only should the effect of each of these three factors depend on each

23. We thank an anonymous reviewer for suggesting this name for such models.
24. A model with k unique independent variables and all their pairwise interactions

will comprise (k!)/2(k � 2)! � k regressors.
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of the others in all pairwise interactions, but the effect of each might log-
ically depend on the combination of the others present as well. For ex-
ample, the government-durability benefit of additional seats of parliamen-
tary support certainly should depend on the reliability of those seats’
votes, and so we are theoretically and substantively rather confident of the
PS � PD interaction. However, the impact of this “reliability adjusted”
additional parliamentary support on government duration might then de-
pend on the number of governing parties by the same logic that led us to
our initial model with its single interaction term, PS � NP. Table 9 also
gives the estimation results for such a “fully interactive” model, which
adds PS � NP � PD to the set of pairwise interactive terms. Obviously,
we are now straining the available information in the mere twenty-two
observations of our example data set severely, but the empirical support

TABLE 9. OLS Regression Results, Government Duration: Three-Way Interactive Models

Chained- Pairwise- Fully
Interaction Interaction Interactive

Model Model Model

Number of Parties (NP) �33.810 �27.766 �51.265
(12.013) (11.535) (41.342)

0.012 0.029 0.235
Parliamentary Support (PS) �0.66773 �1.5115 �2.0949

(0.47518) (0.61940) (1.1699)
0.179 0.028 0.095

Party Discipline (PD) 14.859 �48.690 �86.847
(7.758) (33.670) (72.969)
0.073 0.169 0.254

Number of Parties � Parliamentary 0.52785 0.43443 0.84262
Support (NP � PS) (0.20651) (0.1970) (0.7171)

0.021 0.043 0.260
Number of Parties � Party Discipline �2.6514 �3.4973 22.233

(NP � PD) (3.7263) (3.4716) (43.531)
0.487 0.330 0.617

Party Discipline � Parliamentary 1.1624 1.8219
Support (PD � PS) (0.60174) (1.2709)

0.073 0.174
Number of Parties � Parliamentary �0.44313

Support � Party Discipline (0.74719)
(NP � PS � PD) 0.563

Intercept 62.191 108.039 141.495
(27.159) (34.545) (66.556)

0.036 0.007 0.052

N (df ) 22 (16) 22 (15) 22 (14)
Adjusted R2 0.4967 0.5701 0.5507
P � F 0.0053 0.0031 0.0069

Note: Cell entries are the estimated coefficient, with standard error in parentheses, and two-sided p-level
(probability �T � � t) referring to the null hypothesis that � � 0 in italics.
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for this fully interactive model over the preceding pairwise-interactive
model seems weak at any rate.25

Interpretation of estimated effects in such highly interactive models
from coefficient estimates alone would be especially problematic. For ex-
ample, the coefficient �np in each of these models refers to the effect of
NP when both PS and PD are zero, and the former, of course, is logically
impossible. Using the derivative method allows for better interpretation:

�33.81 � 0.528(PS) � 2.651(PD)
in the chained-interaction model

�GD �27.77 � 0.434(PS) � 3.497(PD)
� ��NP in the pairwise-interaction model

�51.26 � 0.843(PS) � 22.23(PD) � 0.443(PS � PD)
in the fully interactive model

�0.6677 � 0.528(NP)
in the chained-interaction model

�GD �1.511 � 0.434(NP) � 1.162(PD)          
� ��PS in the pairwise-interaction model

�2.095 � 0.843(NP) � 1.822(PD) � 0.443(NP � PD)
in the fully interactive model

14.86 � 2.651(NP)
in the chained-interaction model

�GD �48.69 � 3.497(NP) � 1.162(PS)  
� ��PD in the pairwise-interaction model

�86.85 � 22.23(NP) � 1.822(PS) � 0.443(NP � PS)
in the fully interactive model

The conditional effects of each independent variable in a three-way
(multiple) interaction model, excepting the variables not chained in a
chained-interaction model, depend on the values of two (or more) other
independent variables. Accordingly, effective interpretation will require
the presentation of three (or more) dimensions of information: the value
of each of the conditioning variables and the estimated conditional effect
corresponding to those values. The section “Presentation of Interactive
Effects” in this chapter provides useful strategies for doing this.

In summary, these exercises in interpretation of coefficients should
underscore the point that the variables in interactive specifications have

25. A model with k unique independent variables and all possible unique interactions
of all subsets (including the whole set) of those k factors will comprise 2k�1 regressors.
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varying effects. The size and sign of the effect of x can depend critically
upon the value at which the other variable, z, is held; conversely, the size
and sign of the effect of z can depend critically upon the value at which
the other variable, x, is held. Calling one of the coefficients involved in
these effects the “main effect” and another the “interactive effect” can
be quite misleading and is no substitute for understanding the model’s
actual estimated effects. Outside the purely linear-additive model, coeffi-
cients are not effects. Differentiation and differences of predicted values
are two simple, universally applicable, and reliable tools for examining
the effect of variables x and z on y in general and in interactive models
in particular.

Once we have calculated these estimated conditional effects, however,
we must also estimate and convey the statistical certainty of those esti-
mates. We next discuss how to calculate standard errors for estimated
conditional effects (as opposed to coefficients) and determine the degree
to which these effects (as opposed to coefficients) are statistically distin-
guishable from zero.

Linking Statistical Tests with Interactive Hypotheses

Common social-science practice in testing interactive propositions relies
almost exclusively on t-tests of significance of individual coefficients in
the model. Researchers commonly compare each of the three key coeffi-
cient estimates in a typical interactive model, for example, �̂x, �̂z, and �̂xz

in the standard linear-interactive model, (14), to its respective standard
error. Assuming that the model exhibits the necessary statistical proper-
ties otherwise (i.e., the Gauss-Markov conditions), the ratios in this com-
parison are t-distributed (or asymptotically normal), and so these tests
are statistically valid (asymptotically). However, scholars often mistake
their meaning—that is, they often mistake what these t-tests actually
test—reflecting the persistent confusion of coefficients for effects and the
use of the misleading main- and interactive-effect terminology. Just as the
effects of variables involved in interactive terms depend upon two (or
more) coefficients and the values of one (or more) other variable(s), so
too do judgments of uncertainty surrounding those effects: their stan-
dard errors and the relevant t-statistics, confidence intervals, and hy -
pothesis-test results (significance levels).

Single t-tests on individual coefficients on variables involved in inter-
active terms require care to interpret because they refer to significance at
only one empirical value of the other variables. For example, �x and �z

in our standard model (8) indicate, respectively, x’s effect on y when z
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equals zero and z’s effect on y when x equals zero, and so the standard
t-tests on our estimates �̂x and �̂z indicate the significance of that vari-
able’s effect when the other variable equals zero. These specific values of
zero, as noted before, may be substantively, empirically, or even logically
irrelevant.

For example, in our model of the number of presidential candidates,
the number of ethnic groups never equals zero in the sample and, logi-
cally, could not. Likewise in the government-duration example, neither
the number of governing parties nor the level of parliamentary support
could ever be zero. Thus, any inferences drawn about the statistical sig-
nificance of �R, the coefficient on Runoff in table 1, or of �np, �ps, or �pd

in any of the models of table 9, are largely meaningless because they refer
to conditions that could not logically exist. On the other hand, inferences
drawn about the statistical significance of our estimate of coefficient �G

in table 2 refer to the impact of Groups in the substantively meaningful
case where Runoff equals zero. With no runoff system, the number of
ethnic groups decreases the number of presidential candidates, and the
test of whether the decrease is statistically significantly distinguishable
from zero (i.e., no change) produces a p-value of 0.228.

Likewise in our model of U.S. support for social welfare (table 3), the
coefficients on Female and Republican each refer to substantively im -
portant conditions. The term �̂F is the gender gap when Republican
equals zero, that is, among Democrats, which is substantively tiny
(�0.003) and statistically indistinguishable from zero (i.e., insignificant,
at p � 0.828), whereas �̂R is the partisan gap when Female equals zero
(among males), which is substantively sizable (0.22) and highly statisti-
cally distinguishable from zero (p � 0.001).

Even in cases like these last three, however, where individual coeffi-
cients refer to logically possible conditions that exist in the sample and,
indeed, have important substantive meaning, the judgment of statistical
significance is still a limited one. In the first case, it applies only to the ef-
fect of Groups in the absence of runoffs (Runoff � 0) and says nothing
about that effect where runoffs occur (Runoff � 1). In the latter two
cases, the t-tests on the interaction terms refer only to the significance of
the gender gap among Democrats and to the partisan gap among males,
and they say nothing of the other two gaps (the gender gap among Re-
publicans and the partisan gap among females). Moreover, the specific
conditions to which the coefficient estimates and their estimated stan-
dard errors refer have no greater claim than the remaining conditions do
to being “main” effects in any sense.

To provide a universally valid framework for hypothesis testing of ef-
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TABLE 10. Does y Depend on x or z?

Hypothesis Mathematical Expression Statistical Test

x affects y, or y is a function of y � f(x) F-test
(depends on) x �y/�x � �x � �xzz �� 0 H0: �x � �xz � 0

x increases y �y/�x � �x � �xzz � 0 Multiple t-tests:
H0: �x � �xzz � 0

x decreases y �y/�x � �x � �xzz 	 0 Multiple t-tests:
�x � �xzz 
 0

z affects y, or y is a function of y � g(z) F-test:
(depends on) z �y/�z � �z � �xzx �� 0 H0: �z � �xz � 0

z increases y �y/�z � �z � �xzx � 0 Multiple t-tests:
H0: �z � �xzx � 0

z decreases y �y/�z � �z � �xzx 	 0 Multiple t-tests:
H0: �z � �xzx 
 0

Note: Table assumes standard linear-interactive model, y � �0 � �xx � �zz � �xzxz � �, is
specified.

fects rather than coefficients in interactive models, consider the follow -
ing types of theoretical questions often asked about them: (1) Does y de-
pend on x, or, equivalently, is y a function of x? Does y depend on z, or,
equivalently, is y a function of z? (2) Is y’s dependence on x contingent
upon or moderated by z, or, equivalently, does the effect of x on y de -
pend on z? Is y’s dependence on z contingent upon or moderated by x,
or, equivalently, does the effect of z on y depend on x? This is the classic
interactive hypothesis; the two sets of questions are logically identical.
(3) Does y depend on x, z, and/or their interaction, xz, at all, or, equiv-
alently, is y a function of x, z, and/or xz? In tables 10–12, we link each
of these sets of theoretical questions about interactive relationships to
hypotheses, and each hypothesis to its mathematical expression and to
its correspondingly appropriate statistical test(s).

We start with the simpler propositions in table 10. Note that the sta-
tistical test that corresponds to each hypothesis states a null hypothesis
that, as always, is what the researcher would like, theoretically, to reject
statistically. The first hypothesis examines whether x has any effect on y.
The mathematical expression for testing the effect of x on y includes �x

and �xzz. The standard F-test on the pair of coefficients, �x and �xz ,
therefore identifies whether x matters (i.e., whether y depends on x).
Only these coefficients both being zero would imply that y does not de-
pend on x in any fashion in this model.

An extension of this first hypothesis would propose some direction to
the effect of x on y. The “simple” extension that the effect of x on y is
positive or negative is actually ill defined in linear-interactive models be-
cause the effects of x vary linearly depending on values of z, implying
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that the effects will be positive for some, equal to (and around) zero for
some, and negative for other z values, although, as stressed before, not
all values of z will necessarily be substantively relevant. Accordingly, no
common practice exists for testing hypotheses that x or z generally in-
creases or decreases y in linear-interactive models because hypotheses
like these are logically ambiguous in such models. Depending on where
the relevant ranges of z lie, and on the accompanying standard errors,
the effects could therefore be significantly positive in some meaningful
ranges, significantly negative in others, and indistinguishable from zero
in yet others.

To illustrate, suppose we hypothesize that x has an increasingly posi-
tive effect on y as z increases, starting from no effect at z � 0. Suppose
also that z � 0 is logically impossible. In this case, even if that proposi -
tion were true and the evidence strongly supported it, the estimated effect
of x on y would be zero at z � 0 and therefore necessarily statistically in-
distinguishable from zero at that point. The estimated effect also must be
statistically indistinguishable from zero for some range near z � 0, given
that all estimates have some error. (Obviously, the insignificant range will
be larger the less precisely the relevant coefficients are estimated.) There-
fore, hypotheses that the effects of x (or z) are generally positive or nega-
tive should instead be specified over some range of z (or x).

In stating hypotheses that prescribe the range of values of the condi-
tioning variable(s) over which they are to be evaluated, researchers
should calculate measures of uncertainty to determine whether the ef-
fects of x at several specific values of z are statistically distinguishable
from zero. This approach is highlighted in the second and third hy -
potheses in table 10. Then, to evaluate a claim that the effect of x on y
is generally positive or negative, the researcher could test whether the ef-
fect of x on y is positive over the entire logically possible, or substan-
tively sensible, or sample range of z by conducting several t-tests along
the range of z.26 Alternatively, but equivalently, he or she could plot
�ŷ/�x over an appropriate range of z along with confidence intervals.
These confidence intervals would indicate rejection of the null hypothe -

26. Alternatively, the researcher could simply estimate a linear-additive model that
omits the interaction in question and test whether the coefficient on x or z significantly dif-
fers from zero in the usual manner. If the interaction truly exists, the linear-additive model
would tend to produce for coefficients on x and z their average effect across the sample val-
ues of the other variable. If the interaction does truly exist, however, the researcher must
note that this linear-additive model is misspecified, with the coefficient estimates on x and
z therefore likely subject to attenuation bias and inefficiency. Accordingly, these tests would
tend to be biased toward failing to reject.
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sis at all values of z where zero lies outside the confidence interval
around the estimated effect. However, as just explained, researchers must
recognize that, in some cases, we would expect failure to reject (confi-
dence intervals that span zero) at some levels of z even if the hypothesis
generally were very strongly supported by the data.27

To execute this set of t-tests or generate these confidence intervals, the
researcher will first need to calculate the estimated conditional effect by
the differentiation or difference method. In (14), for instance, the mar-
ginal effect of x on y is �ŷ/�x � �̂x � �̂xzz. As always, to express the un-
certainty of an estimated effect, in standard errors or in confidence inter-
vals around it, we must find its variance. It is critical to note that the
coefficient estimates vary across repeated samples, not the values of z;
that is, the estimated coefficients are the random variables, whereas z is
fixed.28 The estimated effect of x on y contains the product of �̂xz and z;
correspondingly, the estimated conditional effects will have some level of
uncertainty that depends on z. Just as the effects of x on y vary with the
values of z, the standard errors of the effects of x on y also vary with val-
ues of z. Each unique value in the set of estimated conditional effects (one
at each value of z) will have its own variance and corresponding standard
error.29 The variance of �ŷ/�x, the estimated marginal effect of x on y, is30

27. Recognizing this issue, we suggest subsequently that researchers plot the estimated
effects of x across meaningful ranges of z, along with confidence intervals, and then con-
sider the share of these confidence intervals’ covered area that lies above (or below) zero as
an indication of how strongly the evidence supports the proposition. Since “generally” is
imprecise and involves judgment, this test is imprecise and involves judgment too, but vi-
sualizing graphically the proportion of a confidence area that lies above or below zero
should help in rendering this judgment.

28. Recall that the classical linear-regression model assumes that z is fixed in repeated
sampling or that, if z is stochastic, we interpret our estimates as conditioning on z (i.e.,
given z or holding z constant). Either way, in our estimated effects, z is fixed; �̂ is what
varies due to estimation uncertainty.

29. One must distinguish between the variance of the estimated marginal effect of x
on y given z, V(�E(y�x,z)/�x); the variance of the estimated effect of a discrete change in x
on y given z, V(�E(y�x,z)/�x); the variance of the prediction or estimate itself, V[E(y�x,z)];
and the variance of the prediction or forecast error, V[y � E(y�x,z)]. Both estimation error
in �̂ and the stochastic residual or error term in the model, �, arise in the fourth case (vari-
ance of the prediction or forecast error). The variances of estimates and of estimated ef-
fects, that is, all of the other cases, involve only the estimation error in �̂. 

30. Given some constant c and some random variable r, V(cr) � c2V(r). Given some
constant c and two random variables r1 and r2, the variance of the expression V(r1 � cr2)
� V(r1) � c2V(r2) � 2cC(r1,r2). In our context, the x and z are fixed in repeated sampling,
per the standard OLS assumptions, and the estimated coefficients are the random variables.
More generally, for a vector of random variables, �̂, and a constant vector, m, the variance
of the linear-additive function m��̂ is V(m��̂) � m�V(�̂)m. Expression (26) is just one spe-
cific example of this more general formula. 
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V(�ŷ/�x) � V(�̂x) � z2V(�̂xz) � 2zC(�̂x , �̂xz) (26)

Our uncertainty regarding the conditional effects of x on y thus de-
pends on variability in our estimates of �x and �xz, the covariance be-
tween those estimates of �x and �xz, and the values of z at which the ef-
fects are evaluated. Our estimates of V(�̂x) and V(�̂xz) are simply the
squares of the standard errors of the coefficient estimates, �̂x and �̂xz, re-
ported in typical regression output. The covariance of �̂x and �̂xz, how-
ever, is not typically displayed in standard regression output. It must be
extracted from the estimated variance-covariance matrix of the coeffi-
cient estimates.

A variance-covariance matrix31 is a symmetric matrix that contains
the variance of each estimated coefficient along the diagonal elements
and the covariance of each estimated coefficient with the other estimated
coefficients in the off-diagonal elements:

V(�̂1)
C(�̂1,�̂2) V(�̂2)V(�̂) � � ��

C(�̂1,�̂k) C(�̂2,�̂k)  ��� V(�̂k)

In practice, we use estimates of V(�̂x), V(�̂xz), and C(�̂x, �̂xz), which

we will designate as V(�̂x) , V(�̂xz), and C(�̂x,�̂xz). The desired estimate of
C(�̂x,�̂xz) will appear as the off-diagonal element in the estimated vari-
ance-covariance matrix that corresponds to �̂x and �̂xz. In most software,
researchers can easily retrieve this estimated variance-covariance matrix
by a single postestimation command.32

To execute the tests or construct the confidence intervals suggested in
the second and third rows of table 10, then, the researcher calculates the
effect of x at some value of z, �ŷ/�x � �̂x � �̂xzz, and the estimated vari-

ance around that effect at that value of z, V(�ŷ/�x). The t-statistic for test-
ing whether this estimate is statistically distinguishable from zero is then
found by dividing the estimated effect �ŷ/�x by the estimated standard
error of �ŷ/�x and evaluating the result against the t-distribution (with n
� k degrees of freedom, with n the number of observations and k the
number of regressors, including the constant). The researcher would then
repeat the process for other values across the relevant range of z to de-
termine whether a general claim can be made about the direction of the
effect.

���

¨ ¨ ¨
¨

31. In OLS, the variance-covariance matrix of the estimated coefficient vector is
s2(X�X)�1, where s2 is our estimate of �2, the variance of �. 

32. In STATA, this command is “vce”.
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As suggested earlier, however, determining whether the effect of x on
y is generally, typically, or on-average positive or negative, a common
component of the typical complex of interactive hypotheses, requires
more precise definition of the italicized terms. If on-average refers to the
effect at the sample-average value of z, then the single t-test of the effect
of x at that value of z suffices. This value of z also gives the appropriate
estimated effect and its statistical confidence for an on-average effect
taken to mean the average in the sample of the effect of x.33 If, however,
one wishes to gauge the statistical certainty surrounding the hypothesis
that the effect of x on y is generally or typically positive, we suggest plot-
ting the �ŷ/�x over the sample range of z, with confidence intervals.34

Support for the hypotheses that �y/�x is generally or typically positive or
negative would correspond to most (unfortunately, no firm cutoff share
exists) of this confidence interval lying appropriately above or below
zero. One could quantify the share of the area covered by the confidence
interval that lies above or below zero to give more precision to this
analysis.35

Aside from these basic hypotheses that x affects y (perhaps with some
sign over some range of z), researchers are also interested in whether and
how the effects of x and of z on y depend on the other variable. Table
11 pre sents these interactive hypotheses.

Notice that the coefficient on xz directly reflects the presence, sign, and
substantive magnitude of this conditioning relationship: that is, the degree
to which the effects of x and z on y depend on the other variable’s value.
As such, the standard t-test of the coefficient on the multiplicative term
tests for the presence or sign of a conditioning relationship. Since the ef-
fect of x on y is �y/�x � �x � �xzz, a simple t-test of the null hypothesis
that �xz � 0 directly evaluates whether the effect of x changes as z
changes. A rejection of the null hypothesis that �xz � 0 thus supports the
most central interactive hypothesis: the effect of x on y varies with the
level of z (and vice versa). If interactive hypotheses contain a directional

33. The first section of chapter 4 shows that this hypothesis also corresponds to the
standard t-statistic reported for the coefficient on x* in an interactive model where x and
z have been mean-centered (had their sample means subtracted) to x* and z*.

34. The “Presentation of Interactive Effects” section in this chapter discusses how to
construct confidence intervals.

35. An alternative strategy would be to estimate a different model, one without the in-
teraction term(s), and simply evaluate the usual t-test on the appropriate coefficient, on x
or on z. This alternative would reveal directly whether, on average or generally, x or z had
a nonzero effect on y. However, if the true relationship really is interactive, then this alter-
native model is misspecified, and so these t-tests would be, at minimum, inefficient. See
note 27.
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TABLE 11. Is y’s Dependence on x Conditional on z and Vice Versa? How?

Hypothesis Mathematical Expression Statistical Test

The effect of x on y depends on z y � f(xz,•) t-test: H0: �xz � 0
�y/�x � �x � �xzz � g(z)

�(�y/�x)/�z � �2y/�x�z � �xz � 0
The effect of x on y increases in z �(�y/�x)/�z � �2y/�x�z � �xz � 0 t-test: H0: �xz � 0
The effect of x on y decreases in z �(�y/�x)/�z � �2y/�x�z � �xz 	 0 t-test: H0: �xz 
 0
The effect of z on y depends on x y � f(xz,•) t-test: H0: �xz � 0

�y/�z � �z � �xzx � h(x)
�(�y/�z)/�x � �2y/�z�x � �xz � 0

The effect of z on y increases in x �(�y/�z)/�x � �2y/�z�x � �xz � 0 t-test: H0: �xz � 0
The effect of z on y decreases in x �(�y/�z)/�x � �2y/�z�x � �xz 	 0 t-test: H0: �xz 
 0

Note: Table assumes standard linear-interactive model, y � �0 � �xx � �zz � �xzxz � �, is specified.

element—for example, the effect of x on y increases as z increases, or the
effect of x on y decreases as z increases—researchers might apply one-
tailed tests of the null hypothesis that �xz � 0 or �xz 
 0. These direc-
tional hypotheses are displayed in the second and third lines of table 11.36

Note, also, that the mathematical expression and the statistical test
for the hypothesis that x conditions the effect of z on y are identical to
those for the converse that z conditions the effect of x on y. This reflects
the logical symmetry of interactive propositions. If z conditions the effect
of x on y, then x logically must condition the effect of z on y and in the
same amount. In fact, the second three rows of table 11 simply state the
logical converses of the first three rows, and so the corresponding math-
ematical expressions and statistical tests are identical.37

Finally, table 12 reveals the statistical test corresponding to the
broadest sort of hypothesis one might have regarding an interactive
model: that y depends in some manner, be it in a linear-additive and/or a
linear-interactive way, on x and/or on z. In common language, some one
or combination of x and z matters for y. This corresponds statistically,
quite simply, to the F-test that all three coefficients involved in the inter-

36. Since assuming directionality in this way lowers the empirical hurdle for statistical
rejection, many scholars opt more conservatively for always employing nondirectional hy-
potheses and two-tailed tests.

37. The order of differentiation in a cross-derivative never matters, and so this sym-
metry does not rely on the linear-multiplicative form specifically. In any logical proposi-
tion/mathematical model, that the effect of x depends on z implies that the effect of z de-
pends, in identical fashion, on x: �(�y/�x)/�z � �(�y/�z)/�x for any function y(x,z). In this
case, the effect of x on y, or how y changes as x changes, is �y/�x � �x � �xzz. The effect
of z on that effect of x on y, or how z changes the effect of x on y, is analogously �(�y/�x)/�z
� �(�x � �xzz)/�z � �xz. The converses for the effect of z on y and how x modifies this ef-
fect are �y/�z � �z � �xzx and �(�y/�z)/�x � �(�z � �xzx)/�x � �xz.
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action, �x, �z, �xz , are zero. That all three of these are zero is the only
condition that would render x and z wholly irrelevant to y.

Let us walk our first empirical example through the tests outlined in
tables 10–12.

First, does x affect y? Does the number of presidential candidates de-
pend in some linear or linear-interactive way on the number of ethnic
groups? An F-test of the null hypothesis that �G � 0 and �GR � 0 ad-
dresses this question. The F-test produces these results:38 F � 2.62;
Prob(F2,12 � 2.62) � 0.1140. Whether to reject the null hypothesis de-
pends on the researcher’s desired level of certainty. At conventional levels
(p � 0.10, p � 0.05, p � 0.01), the researcher would not (quite) reject
the null.39

Does z affect y? Does the number of presidential candidates depend
in some linear or linear-interactive way on the presence of a runoff sys-
tem? The F-test of the null hypothesis that �R � 0 and �GR � 0 yields
the following results: F � 2.96; Prob(F2,12 � 2.96) � 0.0903, which
would (barely) satisfy a p � 0.10 criterion but fail the stricter p � 0.05,
p � 0.01 criteria.

Next, we ask whether x (generally) increases y. To answer this ques-
tion, the researcher should conduct t-tests of or construct confidence in-
tervals for the effect of x across some range of values of z (correspond -
ing to “generally”). To conduct these t-tests, one must first calculate the
standard errors associated with the given marginal effect following equa-
tion (26). Table 13 displays the estimated variance-covariance matrix
from our example, which we will need for these calculations.40

The element in the first row and first column, 0.593, is the estimated

TABLE 12. Does y Depend on x, z, or Some Combination Thereof?

Mathematical
Hypothesis Expression Statistical Test

y is a function of (depends on) x, z,
and/or their interaction y � f(x,z,xz) F-test: H0: �x � �z � �xz � 0

Note: Table assumes standard linear-interactive model, y � �0 � �xx � �zz � �xzxz � �, is
specified.

38. In our notation, F is the calculated F-statistic, and Prob(Fn,m � F) is the probabil-
ity, under the null, of a value greater than F in an F-distribution with n and m degrees of
freedom; that is, the p-level at which the null is rejected.

39. A less strictly classical approach to hypothesis testing would simply report the p-
level and leave the reader to determine how much weight to assign a result with this level
of statistical significance.

40. Appendix B provides step-by-step STATA commands for conducting these types of
calculations.
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variance of �̂G, which is the square of its standard error from table 1:
0.7702 	 0.593. Likewise, the estimated variance of �̂GR is the square of
its standard error reported in table 1: 0.9412 	 0.885. The information
we need from the variance-covariance matrix that we do not see in the

typical regression output is C(�̂G,�̂GR), which is �0.593. To calculate the
estimated variance of the estimated marginal effects, we simply substi-
tute these values from the estimated variance-covariance matrix into
equation (26).

V(�ŷ/�G) � V(�̂G) � Runoff 2 V(�̂GR) � 2 � Runoff

� C(�̂G,�̂GR)

V[(�ŷ/�G) � Runoff � 0] � 0.593 � 02 � 0.885 � 2 � 0 � �0.593 

� 0.593

V[(�ŷ/�G) � Runoff � 1] � 0.593 � 12 � 0.885 � 2 � 1 � �0.593 

� 0.292

The proposition that societal groups increase the number of presi -
dential candidates corresponds to the null hypothesis: H0: �G

� �GR Runoff � 0. This null hypothesis can be evaluated at the two valid
values of z: zero (no runoff system) and one (a runoff system). Table 14
gives these results.

With a one-tailed p-value of 0.884, we cannot reject the null hypoth-
esis that �G � �GRRunoff � 0 when Runoff � 0. In systems without
runoffs, a negative or null relationship between Groups and Candidates
cannot be rejected. However, with a one-tailed p-value of 0.041, we can

¨
¨¨

¨ ¨ ¨¨

TABLE 13. Estimated Variance-Covariance Matrix of Coefficient Estimates,
Predicting Number of Presidential Candidates

Groups Runoff Groups � Runoff Intercept

Groups 0.593
Runoff 0.900 2.435
Groups � Runoff �0.593 �1.377 0.885
Intercept �0.900 �1.509 0.900 1.509

TABLE 14. Hypothesis Tests of whether Groups Affects Number of Presidential Candidates

One-Tailed One-Tailed
p-Value p-Value

s.e. H0: �G � H0: �G � 90% Confidence
�ŷ/�G (�ŷ/�G) t-Statistic �GRRunoff � 0 �GRRunoff 
 0 Interval

Runoff � 0 �0.979 0.770 �1.271 0.886 0.114 [�2.352, 0.394]
Runoff � 1 1.026 0.540 1.902 0.041 0.959 [0.064, 1.988]
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reject the null hypothesis that Groups decrease or have no effect on Can-
didates in favor of the alternative that some positive relationship be-
tween Groups and Candidates exists when Runoff � 1. To test the re-
verse directional hypothesis, that the number of societal groups decreases
the number of presidential candidates, we pose the opposite null hy -
pothesis: �G � �GRRunoff 
 0 and reevaluate. In the absence of a runoff
system, the one-tailed p-value is 0.116, which actually (substantively
oddly, as we have noted) approaches significance. In the presence of a
runoff system, the one-tailed p-value of 0.959 suggests that we are quite
unable to reject the null hypothesis of a positive or null relationship be-
tween Groups and Candidates.

To test the analogous directional hypotheses with respect to the effect
of a runoff system on the number of presidential candidates, the re-
searcher could conduct a number of t-tests over a logically relevant range
of Groups. Table 15 displays some examples.

Here, we see that evaluation of the null hypothesis of �R � �GRGroups
� 0 changes for various values of Groups. As the number of ethnic groups
increases, our ability to reject the null hypothesis that runoff systems re-
duce the number of candidates increases. When Groups exceeds 1.5, the
hypothesis test begins to approach conventional significance levels. At
Groups � 2, we can reject the null hypothesis that runoff systems reduce
the number of candidates. To investigate whether a runoff system de-
creases the number of presidential candidates, we reevaluate the t-statistics
for the null hypothesis: �R � �GRGroups 
 0. At the resulting one-tailed
p-values, we cannot remotely reject the null hypothesis in any case, thus
lending no support at all to the reverse proposition.

So far, then, the evidence perhaps weakly suggests that the number of
ethnic groups relates to the number of presidential candidates and slightly
less weakly suggests that the presence or absence of runoff systems does
so. The best that might be said regarding the results for the general di -
rection of these relationships is that the evidence suggesting that runoffs

TABLE 15. Hypothesis Tests of whether Runoff Affects Number of Presidential Candidates

One-Tailed One-Tailed
p-Value p-Value

s.e. H0: �R � H0: �R � 90% Confidence
�ŷ/�R (�ŷ/�R) t-Statistic �GRGroups � 0 �GRGroups 
 0 Interval

Groups � 1 �0.486 0.752 �0.646 0.735 0.265 [�1.826, 0.854]
Groups � 1.5 0.517 0.542 0.954 0.180 0.820 [�0.449, 1.483]
Groups � 2 1.520 0.682 2.229 0.023 0.977 [0.305, 2.735]
Groups � 2.5 2.522 1.038 2.430 0.016 0.984 [0.672, 4.373]
Groups � 3 3.525 1.461 2.413 0.016 0.984 [0.922, 6.128]
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and ethnic fragmentation might generally decrease the number of presi-
dential candidates is consistently and considerably weaker than the evi-
dence weighing in the other, the theoretically expected, direction.

Next, continuing to the tests outlined in table 11, comes the ques-
tion of whether the effect of Groups on Candidates depends in some
way on the presence or absence of a runoff system and vice versa. The
answer to this central substantive question of interactive models
emerges directly from the coefficient on the interactive term, �GR, and
its standard error. A two-tailed test of the null hypothesis H0: �GR � 0
yields a p-value of 0.054. Determination of “statistical significance” de-
pends on the researcher’s acceptable level of uncertainty: rejection at
the p � 0.10 threshold, near rejection at a p � 0.05 threshold, and fail-
ure to reject at the tighter p � 0.01 level. The symmetry of interaction
terms also implies the same answer for whether Groups modifies the ef-
fect of Runoff.

The directional hypothesis of whether runoffs increase the effect of
Groups on Candidates requires a one-tailed test of the null H0: �GR � 0,
which yields a p-value of 0.027. The researcher can reject the null hy-
pothesis of a negative or nonzero coefficient in favor of the alternative
hypothesis of some positive coefficient at the 0.10 and 0.05 levels but not
at the 0.01 level. The positive effect of Groups on Candidates does seem
larger in runoff systems, and Runoff has greater positive effect with a
higher number of Groups.

Finally, consider the test in table 12: whether x and z have any effect
on y in some linear or linear-interactive fashion. Here, the researcher
cares whether Groups, Runoff, and/or their product affects Candidates.
An F-test that all three coefficients are zero, H0: �G � �R � �GR � 0,
yields the following results: F � 2.27, with a p-value from the F3,12 dis-
tribution of 0.132: not overwhelming, but not surprising and perhaps
not too disappointing either, given the small sample size.

We consider the remaining empirical examples more quickly. In the
support for social welfare example, an F-test on the coefficients on Fe-
male and the interaction between Female and Republican addresses the
interesting substantive question of whether gender affects support for so-
cial welfare. The results, F � 13.08; Prob(F2,1073 � 13.08) � 0.000,
allow us to reject confidently the null hypothesis that gender has no ef-
fect on support for social welfare. Analogously, the F-test of the two co-
efficients on Republican and on the interaction of Female and Republi-
can produces F � 144.07; Prob(F2,1073 � 144.07) � 0.000, allowing
confident rejection of the null hypothesis that partisanship has no effect
on support for social welfare. Next, we test whether the effect of gender
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depends on partisanship and vice versa. Recall that these calculations re-
quire access to values in the estimated variance-covariance matrix. Table
16 contains these values.

Table 17 shows that the statistical significance of the effect of gender
varies sharply by partisanship: among Democrats, we can reject neither
of the directional hypotheses (no statistically discernible effect of gender
exists among Democrats). Among Republicans, in contrast, we can re-
ject the null hypothesis that females are less supportive of social welfare,
at p � 0.001. Table 18 considers the converse: whether partisanship af-
fects support for social welfare at various values of Female, that is,
among males and among females. Here, the null hypothesis that Repub-
lican increases support for social welfare is soundly rejected among both
females and males: being a Republican significantly decreases support
for social welfare. Finally, an F-test of all three coefficients addresses

TABLE 16. Estimated Variance-Covariance Matrix of Coefficient Estimates,
Predicting Support for Social Welfare

Female Republican Female � Republican Intercept

Female 0.00021
Republican 0.00012 0.00024
Female � Republican �0.00021 �0.00024 0.00046
Intercept �0.00012 �0.00012 0.00012 0.00012

TABLE 17. Hypothesis Tests of whether Female Affects Support for Social Welfare

One-Tailed One-Tailed
p-Value p-Value
H0: �F � H0: �F �

s.e. �FRRepublican �FRRepublican 95% Confidence
�ŷ/�F (�ŷ/�F) t-Statistic � 0 
 0 Interval

Republican � 0 �0.003 0.0144 �0.218 0.586 0.414 [�0.031, 0.025]
Republican � 1 0.081 0.0158 5.109 0.000 0.999 [0.050, 0.111]

TABLE 18. Hypothesis Tests of whether Republican Affects Support for Social Welfare

One-Tailed One-Tailed
p-Value p-Value

H0: �R � H0: �R �
s.e. �FRFemale �FRFemale 95% Confidence

�ŷ/�R (�ŷ/�R) t-Statistic � 0 
 0 Interval

Female � 0 �0.220 0.0155 �14.18 0.999 0.000 [�0.251, �0.190]
Female � 1 �0.137 0.0147 �9.33 0.999 0.000 [�0.166, �0.108]
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whether partisanship or gender affect support for social welfare some-
how. Here F � 103.65; Prob(F3,1073 � 103.65) � 0.000, and so we can
confidently conclude that gender, partisanship, and/or their interaction
significantly predict support for social welfare.

In our simple government-duration example (table 5), we test the hy-
pothesis that parliamentary support for government has an effect on gov-
ernment duration using an F-test of the coefficients on PS and the inter-
action of PS and NP: F � 6.50; Prob(F2,17 � 6.50) � 0.008; we can
confidently reject the null hypothesis of no effect. Similarly, the F-test of
the coefficients on NP and NP � PS identifies whether the number of
governing parties has an effect on government duration: F � 4.87;
Prob(F2,17 � 4.87) � 0.021; we can reject the null hypothesis of no ef -
fect at conventional significance levels of p � 0.10 and p � 0.05.

The proposition that the number of governing parties decreases gov-
ernmental duration must be evaluated at particular values of PS. The es-
timated variance-covariance matrix is provided in table 19. Table 20
gives the relevant calculations. When parliamentary support ranges from
40 percent to 60 percent, we can reject the null hypothesis that the num-
ber of governing parties increases governmental duration at conventional
levels. However, when parliamentary support is high (at 70 percent), we

TABLE 19. Estimated Variance-Covariance Matrix of Coefficient Estimates, Predicting
Government Duration

Number of Parliamentary Party
Parties Support NP � PS Discipline Intercept

Number of Parties (NP) 128.712
Parliamentary Support (PS) 4.564 0.206
NP � PS �2.089 �0.078 0.035
Party Discipline 2.980 0.080 �0.058 10.265
Intercept �274.906 �11.870 4.587 �10.666 699.881

TABLE 20. Hypothesis Tests of whether Number of Parties Affects Government Duration

One-Tailed One-Tailed
p-Value p-Value

s.e. H0: �np � H0: �np � 90% Confidence
�ŷ/�NP (�ŷ/�NP) t-Statistic �nppsPS � 0 �nppsPS 
 0 Interval

PS � 40 �12.628 4.135 �3.054 0.996 0.004 [�19.822, �5.434]
PS � 50 �7.942 2.558 �3.104 0.997 0.003 [�12.393, �3.492]
PS � 60 �3.257 1.711 �1.903 0.963 0.037 [�6.233, �0.280]
PS � 70 1.429 2.500 0.572 0.288 0.712 [�2.920, 5.778]
PS � 80 6.115 4.063 1.505 0.075 0.925 [�0.954, 13.183]
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can reject neither of the directional hypotheses, and when support is ex-
tremely high, we can actually weakly reject (at p � 0.075) the null hy-
pothesis that the number of governing parties has the theoretically ex-
pected negative effect on government duration. Conversely for the effect
of parliamentary support, table 21 shows that with only one governing
party, neither directional hypothesis is rejected; greater parliamentary
support might increase, decrease, or have no effect upon the duration of
single-party governments. However, with multiple governing parties, the
null hypothesis that parliamentary support decreases government dura-
tion is rejected. Thus, generally, parliamentary support seems to enhance
government durability as expected, although we cannot reject the alter-
native for the case of single-party governments. Finally, the hypothesis
that the number of governing parties, governing support, and/or their in-
teraction significantly affects duration of governments can be evaluated
using an F-test of all three coefficients. This F-test produces F � 4.62;
Prob(F3,17 � 4.62) � 0.015. We can confidently reject the null hypothesis
of no effect.

In table 7, we considered a simple model in which parliamentary sup-
port had a nonlinear relation to government duration, specified empiri-
cally by including PS and PS2 as regressors. In this case, the effect of PS
on government duration is �GD/�PS � �ps � 2�ps2PS. The test that PS
has some effect on government duration is the F-test of both coefficients,
for which the table reports p � 0.075: moderate support. The test of
whether this effect depends (linearly) on the level of parliamentary sup-
port itself (i.e., that the relationship of PS to government duration would
be quadratic) is the standard t-test on �̂ps2, which is reported in the table
as giving p � 0.142: weak support. To gauge the significance of the esti-
mated effect of PS at particular values of PS, we would use the following
formula:

TABLE 21. Hypothesis Tests of whether Parliamentary Support Affects
Government Duration

One-Tailed One-Tailed
p-Value p-Value

s.e. H0: �ps � H0: �ps � 90% Confidence
�ŷ/�PS (�ŷ/�PS) t-Statistic �nppsNP � 0 �nppsNP 
 0 Interval

NP � 1 �0.118 0.293 �0.402 0.654 0.346 [�0.627, 0.392]
NP � 2 0.351 0.185 1.897 0.037 0.963 [0.029, 0.673]
NP � 3 0.820 0.228 3.587 0.001 0.999 [0.422, 1.217]
NP � 4 1.288 0.374 3.448 0.002 0.998 [0.638, 1.938]
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�GD  
V� � � V(�̂ps � 2�̂ps2PS) 

PS
� V(�̂ps) � V(2�̂ps2PS) � 2C(�̂ps,2�̂ps2PS)

� V(�̂ps) � 4PS2 � V(�̂ps2) � 2PS � 2C(�̂ps,�̂ps2)

� V(�̂ps) � 4PS2 � V(�̂ps2) � 4PS � C(�̂ps,�̂ps2) (27)

The relevant portion of the estimated variance-covariance matrix of
these coefficient estimates is

V(�̂ps) 	 4.247    C(�̂ps2,�̂ps) 	 � 0.0343

C(�̂ps,�̂ps2) 	 �0.0343    V(�̂ps2) 	 0.000281

So, for example, the standard error of the estimated marginal effect
of PS on government duration at PS � 55 percent is

s.e.(�GD/�PS) � 
4.247 � 4 � 552� 0.000281 � 4 � 55 � �0.0343

	 0.3

The marginal effect at this point is �2.73 � 2(0.0257)55 � � 0.09
and, given the associated standard error of the marginal effect, is not re-
motely statistically distinguishable from zero. In fact, the estimated mar-
ginal effect is insignificant in one- or two-tailed tests over about half of
the sample range of PS in this model; to present the range over which the
marginal effect is distinguishable from zero, we suggest calculating and
plotting the confidence intervals around the effect line depicted in figure
2 (as we do in fig. 10). We provide instructions for doing so in the next
section.

In table 8, we log-transformed parliamentary support before includ-
ing it in an interactive model otherwise identical to that of table 5. Ac-
cordingly, testing null hypotheses that effects equal zero (i.e., testing for
the existence of effects) follow that discussion exactly. The variable NP
has no effect on government duration if and only if (iff) the coefficients
on NP and NP � ln(PS) are both zero (F � 5.36; Prob(F2,17 � 5.36) �
0.0157: reject); PS has no effect iff the coefficients on ln(PS) and NP �

ln(PS) are both zero (F � 6.78; Prob(F2,17 � 6.78) � 0.0068: reject); and
NP and PS have no linear or linear-interactive effect iff all three coeffi-
cients are zero (F � 4.81; Prob(F3,17 � 4.81) � 0.0133: reject). The sig-
nificance of the estimated marginal effects of NP at specific values of
ln(PS) and the test of whether NP generally decreases government dura-
tion likewise follow the discussion from the table 5 case exactly, merely
replacing PS with ln(PS). However, estimated marginal effects of PS on

¨¨

¨¨ ¨ ¨

¨ ¨ ¨
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¨ ¨

¨ ¨

¨
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government duration are �GD/�PS � (�̂ln(ps) � �̂npln(ps)NP)/PS, which de-
pend on both NP and PS; so too, then, does the standard error of this es-
timated effect:

V(�GD/�PS) � V �(�̂ln(ps) � �̂npln(ps)NP)/PS�

� V �(�̂ln(ps) � �̂npln(ps)NP)/PS)

1
�       �V(�̂ln(ps))� V(�̂npln(ps)NP) � 2C(�̂ln(ps),�̂npln(ps)NP)� 

PS2

1
� �V(�̂ln(ps)) � NP2V(�̂npln(ps)) � 2NP

PS2

� C(�̂ln(ps),�̂npln(ps))� (28)

We simply insert the values from the estimated variance-covariance
matrix of these coefficient estimates, along with assigned values of NP
and PS, into this formula for the variance of the marginal effect of PS at
those values of PS and NP.41 For example, a three-party government that
increased its parliamentary support marginally from 55 percent would
increase its expected duration by about a month (�GD /�PS � �43.4/55
� (32.7 � 3)/55 	 0.995), with a standard error for that estimate of
[(1/55)2 751.7 � (3/55)2 142.95 � (2 � 3)/552 � 302.8]0.5 	 0.271. Di-
viding the estimated marginal effect by the estimated standard error
yields a t-statistic of 0.995/0.271 � 3.671, implying reject at p(t17 �

3.671) � 0.0019, for the test of the null hypothesis of no effect of PS on
government duration at these levels of NP and PS. As with the preceding
nonlinear transformation, however, we strongly recommend graphical
presentation of such estimated effects and confidence intervals and so
defer further discussion.

For the chained, pairwise, and fully interactive three-way-interaction
models of government duration (table 9), finally, we could follow the
same sequence of common theoretical hypotheses. In doing so, notice
first that we can evaluate whether one of the three independent variables
affects the dependent variable by conducting an F-test of the null hypoth-
esis that the coefficients on all of the terms involving that variable are
zero. For example, the F-test that PS “matters” has a null hypothesis that
�ps and �npps are both zero in the chained model (F � 5.86; p(F2,16

� 5.86) � 0.012); that �ps, �npps, and �pspd are zero in the pairwise model

¨

¨¨¨

¨ ¨ ¨
¨¨ ¨

¨

41. Here V(�̂ln(ps)) and V(�̂npln(ps)) are the squares of the standard errors reported in 

table 8. The term C(�̂ln(ps),�̂npln(ps)) is obtained by calling up the variance-covariance matrix

(not shown), C(�̂ln(ps),�̂npln(ps)) � �302.8.

¨ ¨ ¨¨
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(F � 5.81; p(F3,15 � 5.81) � 0.008); and that �ps, �npps, �pspd, and  �nppspd

are all zero in the fully interactive model (F � 4.26; p(F4,14 � 4.26) �
0.018). That the effect of PS depends on NP or PD in the pairwise or
fully interactive models is now also a joint hypothesis in the pairwise and
fully interactive models: that the coefficients �npps and �pspd are both zero
(F � 5.69; p(F2,15 � 5.69) � 0.015) and that �npps, �pspd, and �nppspd are
all zero, respectively (F � 3.75; p(F3,14 � 3.75) � 0.036). That the effect
of PS depends on NP or that the effect of PS depends on PD are both
simple-hypothesis t-tests in the pairwise model, on �npps or �nppd (t � 2.2,
p(�t15� � 2.2) � 0.04; t � 1.9, p(�t15� � 1.9) � 0.07), respectively, but
each is a joint-hypothesis F-test of �npps and �nppspd or of �pspd and  �nppspd

(F � 2.5; p(F2,14 � 2.5) � 0.12; F � 1.96; p(F2,14 � 1.96) � 0.18), re-
spectively, in the fully interactive model. The tests for the analogous hy-
potheses regarding how the effects of NP or of PD depend on the one
other variable or the two other variables are symmetric. Finally, that
some linear or linear-interactive combination of NP, PS, and/or PD
“matters” corresponds to the F-test of the model in each case (as re-
ported in table 9: F � 4.68; p(F7,14 � 4.68) � 0.007). We highly recom-
mend graphical methods for interpreting the sign and the statistical cer-
tainty and significance of estimated effects of each variable over ranges
of each of the others, as discussed in the next section.

Presentation of Interactive Effects

Hayduk and Wonnacott (1980) noted, “While the technicalities of these
[interactive] procedures have received some attention . . . the proper
methods for the interpretation and visual presentation of regressions
containing interactions are not widely understood” (400). This section
provides guidance on presentation of results from models that include in-
teraction terms.

Mere presentation of regression coefficients and their standard errors
is inadequate for the interpretation of interactive effects. As we have
seen, the estimated effects of variables involved in interactive terms and
the standard errors of these estimated effects vary depending on the val-
ues of the conditioning variables. Therefore, conditional effects, as best
calculated by the derivative or difference method, are most effectively
conveyed in tabular and graphical forms. In the political-science litera-
ture, presentations of effects that involve interactive terms now often do
utilize tables or graphs that depict the effect of x on y when z equals par-
ticular values. Presentation of estimated conditional effects across a suf-
ficiently wide and meaningful range of values of z and indication of the
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estimated uncertainty of these estimated conditional effects across that
range are still too often lacking, however.

Many statistical-software packages can provide conditional marginal
effects or predicted values as well as standard errors for these condi-
tional estimates, typically as part of some postestimation suite of com-
mands.42 Further, other programs exist that will generate estimates of
uncertainty around predicted values from any estimated model using
simulation (King, Tomz, and Wittenberg 2000). While we have no par-
ticular qualms about such preprogrammed commands and procedures,43

the procedures we recommend maximize the user’s control over the val-
ues at which marginal effects and predicted values are calculated and,
we believe, will strengthen the user’s understanding and intuition in in-
terpreting models that contain interactive terms. We strongly recom-
mend that the user be fully conversant with the elementary mathematical
foundations underlying these procedures before taking preprogrammed
commands “off the shelf.”44

Presentation of Marginal Effects

Researchers will often wish to convey to the reader how the effect of x
changes over some range of z values. The estimated marginal conditional
effects of x on y are the first derivative of ŷ with respect to x: �ŷ/�x � �̂x

� �̂xzz. We will want to discuss these conditional effects of x over some
substantively revealing range of z values. One such revealing range and
sequence of values, which may serve as a good default, would be an
evenly spaced range of values ranging from a, the sample minimum of z,
to c, its sample maximum. More generally, the researcher could calculate

42. For example, in STATA, the postestimation command lincom will report estimates,
standard errors, t-statistics, p-levels, and a 95 percent confidence interval for any linear
combination of coefficients. Appendix B contains syntax that will apply lincom across a
range of values.

43. We emphasize, however, that the researcher should verify that the uncertainty es-
timates produced by these procedures do not, as some unfortunately do, erroneously add
stochastic error to estimation error in calculating the uncertainty of estimated effects in
models with additively separable stochastic components (like linear regression).

44. This strong warning is especially important when interpreting the effects of inter-
active variables.  Preprogrammed commands that produce marginal effects of variables of
interest will likely not recognize that a set of the variables is interactive. As such, these com-
mands may generate a marginal effect for some covariate, naively assuming that all other
variables (including the interactive term!) are held constant. This ignores the central fact
that the interpretation of the effect of x requires taking into account the coefficient on x,
the coefficient on xz, and values of z—underscoring our point that coefficients are not ef-
fects in models including interaction terms.
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the marginal effect of x on y for any set of z values of interest. Sample
means, percentiles, means plus or minus one or two standard errors, and
so on, are all frequently useful default points or ranges for these consid-
erations, but substance and researchers’ presentational goals should be
determinate here. Using z values of particular observations—say, of some
well-known, important, or illustrative case or cases in the sample—is
also often a good idea. Finally, crucially, the researcher must also report
the estimated certainty of the estimated conditional effects in some man-
ner: standard errors, t-statistics, significance levels, confidence intervals.
Confidence intervals are usually more effective in graphical presentation
and standard errors, t-statistics, or significance levels in tables. Confi-
dence intervals can be generated by this formula:

�ŷ/�x � tdf,p ����V(�ŷ/�x) 

where tdf,p is the critical value in a t-distribution with df degrees of free-
dom (df � n � k; n is the number of observations and k the number of
regressors, including the constant) for a two-sided hypothesis test at one
minus the desired confidence-interval size. For example, to obtain the
lower and upper bounds of a 95 percent (90 percent) confidence inter -
val, tdf,p should correspond to critical values for a two-sided test at the p
� 0.05 (p � 0.10) level, that is, 0.025 (0.05) on each side; with large de-
grees of freedom, tdf,0.05 is approximately 1.96 (tdf,0.10 	 1.65).

In our first empirical example, we calculated two sets of conditional
effects. We calculated the marginal effect of Groups when Runoff equals
zero and when it equals one, and we calculated the marginal effect of
Runoff at evenly spaced values of Groups from one to three. To con-
struct confidence intervals for these estimated conditional effects, we
need to determine the estimated variance of these estimated effects and
choose a desired confidence level. Given our small sample size, we
choose to accept lower certainty and so select a 90 percent confidence in-
terval. This interval implies a critical value of t12,0.10 � 1.782. We would
thus calculate the upper bound and lower bound for the confidence in-
tervals as

Upper bound: �ŷ/�x � 1.782 � ����V(�ŷ/�x) 

Lower bound: �ŷ/�x � 1.782 � ����V(�ŷ/�x)

Note that V(�ŷ/�x) is the estimated variance of the marginal effect of
x on y, produced by plugging in values from the estimated variance-
 covariance matrix into expression (26). When evaluating the marginal
 effect of x at several values of z, a graphical display of marginal effects

¨
¨

¨¨
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with confidence intervals is especially effective. Figure 4, for example, dis-
plays the marginal effect of Runoff across a range of values of Groups
with confidence intervals around these estimated effects. The straight line
thus plots the estimated marginal conditional effects of Runoff as a func-
tion of Groups, and the confidence interval reveals the uncertainty sur-
rounding these estimated effects. The estimated coefficient on the interac-
tion term, �̂GR, gives our estimate of the slope of the marginal effect line
(�2.01), indicating that the marginal effect of Runoff on the number of
candidates is estimated to increase at a rate of about �2 Candidates for
each one-unit increase in Groups. This graph shows that over the range
of sample-relevant values (varying Groups from 1 to 3), the marginal ef-
fect of Runoff increases by about two for each one-unit increase in the
number of groups. The marginal effect takes both negative values (though
indistinguishable from zero) and positive values along the range of
Groups. The 90 percent confidence interval overlaps zero at lower values
of Groups, suggesting that within that range the marginal effect cannot
be distinguished from zero statistically, but the confidence interval does
not overlap zero when the number of societal groups exceeds 1.75.

Note how this example illustrates the ambiguity discussed previously
in hypotheses of “generally positive” effects of variables involved in lin-
ear interactions. The researcher in this case would likely have hypothe-
sized that runoff systems increase the number of presidential candidates,

Fig. 4.   Marginal effect of Runoff, with 90 percent confidence interval
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especially in more ethnically fragmented societies. Although the effect of
runoff systems is essentially zero when fragmentation is very low, this es-
timated effect turns positive in even moderately fragmented societies,
that is, beyond Groups 	 1.25, and significantly so beyond a modest
Groups 	 1.75. Regarding the proposition that the effect of Runoff in-
creases as Groups increases, no ambiguity arises. The marginal effect line
slopes upward at the rate of �̂GR, and this estimated slope of the effect
line is comfortably significant statistically. The ambiguity arises regard-
ing the hypothesis of a “generally positive” effect, because the estimated
effect of Runoff is not, in fact, positive over the entire sample range of
Groups and is only significantly distinguishable from zero in the positive
direction over some portions of that sample range. Consideration of only
the coefficient on Runoff, �̂R, would have badly served the researcher in
this example; that so-called main-effect coefficient, which actually corre-
sponds to the logically impossible Groups � 0 case, is negative and
larger than its standard error, yet the actual conditional effects of Runoff
are indeed estimated to be positive over almost the entire relevant range.
Graphing the estimated effects over this substantively relevant range
with accompanying confidence intervals in this way reveals that this ev-
idence actually supports that proposition reasonably strongly.

To illustrate the mathematical properties of these effect lines and their
associated standard errors, imagine extending the estimated effect line
from figure 4 in both directions by projecting into much lower and much
higher values for Groups. Projecting into values of Groups less than 1 is
substantively nonsensical, but linear regression per se imposes no such
bounds on the values of independent variables, and so let us imagine that
it were possible here, solely for these illustrative purposes. Calculating
the estimated marginal effects of Runoff as the number of ethnic groups
ranges from �2 to �6 produces figure 5, demonstrating several interest-
ing properties.

As we noted before, the coefficient on Runoff indicates the impact of
Runoff when Groups � 0, and so �̂R � �2.49 is also our estimate of the
intercept of the marginal effect line (i.e., the value on the y-axis when
Groups � 0), as the graph indicates. And, as evidenced in figure 4, the es-
timated coefficient on the interaction term, �̂GR, gives our estimate of the
slope of the marginal effect line (�2.01), indicating that the marginal ef-
fect of Runoff on the number of candidates is estimated to increase at a
rate of about �2 Candidates for each one-unit increase in Groups. Next,
note the hourglass shape of the confidence interval around the estimated
marginal-effect line; this hourglass shape is characteristic of confidence in-
tervals for estimated conditional effects in linear-interaction models. The
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narrowest part of the hourglass occurs at the value of z at which there is
greatest certainty concerning the size of the marginal effect of x on y. This
point, intuitively, will correspond to the sample mean of the other term in
the interaction (z); as always, our estimates have greatest certainty for val-
ues around the mean (centroid for more than one variable) of our data.
The wider parts are points at which lesser certainty prevails regarding the
estimated effects, which, intuitively, correspond to points farther from the
mean (centroid). The characteristic hourglass shape of the confidence re-
gion results from the appearance of z2 in the expression for the variance
of the effect and also from the covariance of the coefficient estimates in
that expression, which is typically negative because the corresponding
variables x and xz tend to correlate positively. The relative concavity of
these hourglasses generally sharpens with the magnitude of this negative
correlation. In summary, the confidence intervals (regions) around condi-
tional-effect lines will be (3D) hourglass shaped, with the narrowest
points located at the mean (centroid) of the conditioning variable(s) and
generally becoming more accentuated as x and xz correlate more strongly,
although accentuation depends also on the relative (estimated) variances
of �̂R and �̂GR and, in appearance, also on graph and z scaling.

Note also from figure 5 that the marginal effect of Runoff is statisti-
cally distinguishable from zero in the negative direction for values of

Fig. 5.  Marginal effect of Runoff, extending the range of Groups
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Groups below about �0.5, and statistically distinguishable from zero in
the positive direction for values of Groups above about 1.75. These re-
sults illustrate clearly the following points made previously. First, the
marginal effect of Runoff indeed varies with values of Groups. Second,
the effect lines, being linear, will extend above and below zero for some
(not necessarily meaningful) values of the variables involved. Third, our
confidence regarding (i.e., standard errors and significance levels for) the
marginal effect of Runoff also varies with values of Groups. Although
figure 5 plots these effects and confidence intervals extending into sub-
stantively and even logically meaningless ranges, we emphasize that, in
actual research, the researcher bears responsibility to ensure that inter-
pretation and presentation of the results correspond with logically rele-
vant and substantively meaningful values of the independent variables of
interest. This implies that researchers must give such information about
sample, substantive, and logical ranges necessary for the reader to rec -
ognize substantively and logically meaningful and sample-covering
ranges. We have projected Groups into negative and very high positive
values for pedagogical purposes only, to display properties of the mar-
ginal effects and confidence intervals most clearly, but we reiterate that
these would not be logically relevant values in this case. Indeed, present-
ing a graph like figure 5, which extends well beyond the sample and in-
deed the logically permissible range, would foster misleading conclusions
regarding the substantive meaning of our estimates.

Other types of graphs may more usefully depict marginal effects
when conditioning variables are not continuous. For example, the vari-
able Runoff takes only two values: zero in the absence of a runoff sys -
tem and one in the presence of a runoff system. Accordingly, the mar-
ginal  effect of Groups on Candidates is also substantively interesting for
only these two values of Runoff. We can graph the estimated marginal
effect of Groups on Candidates as a function of Runoff, as shown in fig-
ure 6, with 90 percent confidence intervals around each estimated mar-
ginal effect.45 We see that in systems without runoffs, the confidence in-
terval includes the value of zero, suggesting that the marginal effect of
societal groups is not distinguishable from zero in countries with these

45. Researchers might also consider plotting normal distributions with means given by
the estimated effects and standard deviations by the standard errors of those estimated ef-
fects. (Least-squares estimates are at least asymptotically normally distributed thusly.) An-
other option is a “box-and-whiskers” plot, with the center dots given by the estimated ef-
fects, the box around that by a confidence interval or some other multiple of the
standard-error range (e.g., plus or minus one standard error), and the whiskers extending
to a greater confidence interval or greater multiple of the standard-error range (plus or
minus two standard errors). We prefer the simplicity of figures 6 and 7.
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systems. We also see that in systems with runoffs, the confidence interval
does not include the value of zero; the marginal effect of societal groups
can be statistically distinguished from zero in these cases. However, the
confidence intervals overlap across the values of Runoff, suggesting that
we cannot say with high levels of certainty that the marginal effects of
Groups in cases without runoffs and with runoffs are statistically distin-
guishable from each other.

As another example of using this type of graph, consider our social-
welfare example, where both Female and Republican are dummy vari-
ables (binary indicators) and each conditions the other’s effect on support
for social welfare. Thus, only four effects exist to plot: gender among
 Dem ocrats and among Republicans and party among women and men.
Graphically, conditional effects and associated confidence intervals in
such cases are perhaps best displayed as shown in figure 7. (We adopt a
more stringent confidence level, 95 percent, in these figures, given the
much larger sample here.) Figure 7 reveals the estimated effects of Female
among Democrats and Republicans with associated confidence intervals
and shows the estimated effects of Republican for males and females,
again with associated confidence intervals. In the top panel, we see that
the confidence interval for the marginal effect of Female among Demo -
crats includes the value of zero whereas that among Republicans does
not. This graph shows that the effect of gender among Democrats does
not differ statistically distinguishably from zero but the effect of gender

Fig. 6.  Marginal effect of Groups, with 90 percent confidence intervals
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among Republicans does. Furthermore, the confidence intervals do not
overlap, indicating that the effect of gender differs significantly between
Democrats and Republicans. In the bottom panel, zero lies outside both
sets of confidence intervals; the marginal effect of partisanship is signifi-
cantly different from zero for both males and females. Again, the confi-
dence intervals do not overlap, suggesting that the marginal effect of par-
tisanship is significantly stronger (in the negative direction) among males.

Fig. 7.  Marginal effect of Female and Republican, with 95 percent confidence
intervals
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Moving to our government-durability example, figures 8 and 9 illus-
trate the marginal effect of the number of governing parties and the mar-
ginal effect of parliamentary support on government duration from the
simple, linear-interactive model of government duration featured in table
5. Figure 8 shows that the marginal effect of NP takes negative and pos-
itive values, depending on the value of PS, as we noted in that discussion.
It also reveals far more clearly than discussion alone could that, at lower
values of PS, the (negative) marginal effect of NP is statistically distin-
guishable from zero (the 90 percent confidence interval lies entirely
below zero until parliamentary support reaches about 62 percent). While
the estimated effect becomes positive beyond that value, it remains sta-
tistically indistinguishable from zero through the rest of the sample
range. We can conclude reasonably confidently that the number of gov-
erning parties reduces government duration for parliamentary support
below 62 percent, as expected, and we could note that it merely becomes
statistically indistinguishable from zero beyond that, even though esti-
mates suggest that it might even become positive. Analogously, figure 9
plots the estimated marginal effect of parliamentary support on govern-
ment duration as a function of the number of governing parties. It is gen-
erally positive and becomes statistically distinguishable from zero in that
direction once the number of governing parties reaches two.

Recall that figure 2 plotted estimated government duration as a quad-
ratic function of parliamentary support. It also plotted the estimated

Fig. 8.  Marginal effect of Number of Parties, with 90 percent confidence interval



marginal effect of parliamentary support on government duration as a
function of the level of support, based on the quadratic model estimated.
Graphical presentation of estimates and estimated effects in nonlinear
models is especially useful, and including some representation of the cer-
tainty of those estimates and estimated effects is equally crucial. Accord-
ingly, figure 10 adds 90 percent confidence intervals to the straight line
(the estimated marginal conditional effect line) in figure 2, using the
square root of the expression in (27) to calculate the estimated standard
error of the estimated marginal conditional effect. (We discuss construc-
tion of the confidence interval around the curved line, the predicted val-
ues, subsequently.) We take the estimated marginal effect and add (sub-
tract) the product of the t-critical value and the estimated standard error
to obtain the upper (lower) bound of the confidence interval:

(�̂ps � 2�̂ps2PS) � 1.729 � [V(�̂ps)� 4PS2 � V(�̂ps2)� 4PS

� C(�̂ps,�̂ps2)]0.5

Likewise, figure 3 plotted the estimated marginal nonlinear condi-
tional effect of parliamentary support on government duration from the
model specifying PS in natural log terms and interactively with the num-
ber of governing parties, NP. This presentation, too, requires indication
of the uncertainty of these estimated effects. We first use the expression

¨ ¨¨
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Fig. 9.  Marginal effect of Parliamentary Support for Government, with 90 per-
cent confidence interval



provided in equation (28) to calculate the estimated standard error of the
marginal effect of PS and then add (subtract) the product of the esti-
mated standard error and the t-critical value to the estimated marginal
effect to obtain the upper (lower) bound of the confidence interval:

1
(�̂ps � �̂npln(ps)NP)/PS � 1.74 � � �V (�̂ln(ps)) � NP2V(�̂npln(ps))PS2

� 2NP � C(�̂ln(ps),�̂npln(ps))��0.5

To accommodate the two-dimensional, monochrome technology of
most print publications and to reduce visual clutter, figure 11 plots just
two of these conditional-effect lines with confidence intervals, those cor-
responding to the revealing and interesting NP � 2 and NP � 4 cases.

The estimated marginal conditional effects of the number of govern-
ing parties on government duration can also be plotted along values of
parliamentary support for government, with a confidence interval. We
calculate the confidence interval as

(�̂np � �̂npln(ps)ln(PS)) � 1.74 � 
V(�̂np) � (ln(PS))2 � V(�̂npln(ps))

� 2ln(PS) � C(�̂np,�̂npln(ps))�0.5

As figure 12 reveals, the point estimate of the effect of NP does turn pos-
itive beyond PS 	 65 percent. However, this putatively positive effect

¨ ¨ ¨

¨ ¨ ¨
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Fig. 10.  Marginal effect of Parliamentary Support and predicted Government
Duration, quadratic-term model, with 90 percent confidence intervals



never surpasses even generous levels of statistical significance (p � 0.10),
whereas the decreasingly negative effects in the range below PS 	 60 per-
cent are statistically distinguishable from zero at this level. Thus, this
fuller picture of the evidence from the empirical analysis rather suggests
that, as expected intuitively, increasing government fractionalization re-
duces durability, but this detrimental effect generally diminishes as the
strength of parliamentary support for that fractionalized government
rises.

As we saw comparing the regression output from the table 5 (linear-
interactive) and table 8 (log-transformed-interactive) versions of this
model, the curvature of the effect lines induced by the log-transformation
of PS is not especially strongly supported relative to a linear specification
(R
–2 � 0.520 vs. R

–2 � 0.511). Graphically, this relatively weak support is
seen from how easily straight conditional-effect lines could fit within the
confidence intervals surrounding these slightly curved conditional-effect
lines. However, we caution that exact correspondence to the significance
with which the non-linear-interactive could reject the linear-interactive
model does not emerge from these graphs. In fact, more generally, abil -
ity to draw flat (unconditional) effect lines within the confidence inter-
vals of slanted (conditional) effect lines does not correspond to a hy -
pothesis test that the effect is conditional (interactive). The correct test of
that, as table 8 detailed, is the simple t-test of the interaction term in the
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Fig. 11.  Marginal effect of Parliamentary Support for Government, log-trans-
formation interactive model, with 90 percent confidence intervals



model (or analogous F-tests in multiple-interaction models as in table 9).
Significance of the hypothesis that the effect of x depends on z (i.e., gen-
erally) does not guarantee that the confidence intervals for the condi-
tional effects at the high and low end of the range of z plotted or, for that
matter, necessarily at any two z-values plotted, will fail to overlap.46

In the chained three-way-interaction model of the first column of
table 9, the effects of PS and of party discipline, PD, are conditioned by
one other variable, NP. We have already discussed and demonstrated
how to present this type of conditional effect. Note, though, that the ef-
fect of NP in this model depends on not one but two other variables: PS
and PD: �GD/�NP � �̂np � �̂nppsPS � �̂nppdPD. One might consider a
three-dimensional plot of such a conditional effect, plotting the marginal
effect of NP (y-axis) as a function of PS (x-axis) and of PD (z-axis).
However, conditional-effect “lines” in such cases will actually be planes
plotted at linearly changing heights y as x and z change, which would be
difficult to render clearly on two-dimensional pages, especially since we
must also include confidence intervals, which will be (hourglass) curved

¨
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Fig. 12.  Marginal effect of Number of Parties, log-transformation interactive
model, with 90 percent confidence interval

46. Indeed, in this case, the linear and the nonlinear models are nonnested and have
the same degrees of freedom, and so empirical comparison of the linear versus nonlinear
models must proceed on other bases entirely.



surfaces above and below that conditional-effect plane. We therefore rec-
ommend eschewing three-dimensional graphics and instead plotting con-
tours of those three-dimensional relationships onto two dimensions. To
be precise, we suggest plotting �ŷ/�x � �̂x � �̂xzz� �̂xww as a function
of z or w at a few values of w or z, each of which will generate one con-
ditional-effect line, each with its own confidence interval, like those pre-
viously shown. In this case, PD is binary, so we could plot �GD/�NP �

�̂np � �̂nppsPS � �̂nppdPD as a function of PS just at PD � 0 and at PD
� 1, with confidence intervals, to illustrate the estimated conditional ef-
fects fully. Figure 13 demonstrates that the detrimental effect of NP on
government durability declines with PS, but it does not seem to be fur-
ther conditioned by PD in this analysis.

In the pairwise and fully interactive three-way-interaction models, fi-
nally, the effects of NP, PS, and PD each depend on the other two fac-
tors. Figures 14 and 15 demonstrate how researchers can graph estima-
tion results from pairwise-interaction models effectively. Figure 14
parallels the case of figure 13, plotting how the effect of parliamentary
support depends on the number of governing parties and party disci-
pline. (The effect of NP symmetrically depends on PS and PD in this
model, too, but those results and that figure add little to what fig. 13 al-
ready displayed.) The formulas for the effect lines in this figure parallel
those from before also:

¨
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Fig. 13.  Marginal effect of Number of Parties, chained-interaction model, with
90 percent confidence intervals



�GD/�PS � �̂ps � �̂nppsNP � �̂pspdPD

V(�GD/�PS) � V(�̂ps) � NP2 � V(�̂npps)

� PD2 � V(�̂pspd) � 2NP � C(�̂ps,�̂npps) 

� 2PD � C(�̂ps,�̂pspd) � 2NP � PD � C(�̂npps,�̂pspd)

�GD �GD
90% c.i.: �1.75 � �V� ��0.5

�PS �PS

The nearly nonoverlapping confidence intervals in figure 14 reveal that
the effect of parliamentary support, unlike that of the number of govern-
ing parties (not shown), does seem to depend somewhat on party dis -
cipline. Intuitively, the durability-enhancing effects of larger parliamen-
tary support are greater with higher than with lower discipline of those
additional partisan supporters. The upward slopes of these conditional-
effect lines show also that the benefit of greater parliamentary support to
government durability seems to increase with the fractionalization of
those governments. Intuitively, single-party governments can survive
with bare-majority support; multiparty governments need more cushion.
This feature also seems more statistically certain at higher party disci-
pline, as the narrower confidence region for the effect at PD � 1 than at
PD � 0 reveals. The effect of party discipline in these models depends on
two continuous variables, NP and PS. 

Therefore, three dimensions are needed to represent its conditional ef-
fects fully; however, a pair of two-dimensional graphs can suffice nearly
as fully and will usually be far easier to comprehend. Namely, we recom-
mend plotting �GD/�PD � �̂pd � �̂nppdNP � �̂pspdPS as a function of NP
at a few values of PS and as a function of PS at a few values of NP, each
with confidence intervals as in figure 15.47 The upper graph displays two
flat conditional-effect lines and nearly completely nonoverlapping confi-
dence intervals. The lower graph displays two clearly upward-sloping
conditional-effect lines nearly on top of each other and with almost fully
overlapping confidence intervals. These graphs suggest that the effect of

¨ ¨¨ ¨¨ ¨ ¨ ¨¨
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47. Using the now-familiar procedures, the estimated variance of the effect is calcu-
lated as

�GD
V � � �V(�̂pd) � NP2 � V(�̂nppd) � PS2 � V(�̂pspd)�PD

� 2NP � C(�̂pd,�̂nppd) � 2PS � C(�̂pd,�̂pspd) � 2NP � PS � C(�̂nppd,�̂pspd)

Accordingly, the confidence interval is the estimated effect from the text plus or minus the
t critical value times the square root of this expression.

¨ ¨̈



48. The expressions for the estimated marginal effect of one variable in a generic three-
way fully interactive model and the estimated variance of that estimated effect are

�ŷ/�x � �̂x � �̂xzz � �̂xww � �̂xzwzw

�ŷ
V � � � V(�̂x) � z2V(�̂xz) � w2V(�̂xw) � z2w2V(�̂xzw)

�x

� 2zC(�̂x,�̂xz) � 2wC(�̂x,�̂xw) � 2zwC(�̂x,�̂xzw)

� 2zwC(�̂xz,�̂xw) � 2z2wC(�̂xz,�̂xzw) � 2zw2C(�̂xw,�̂xzw)

�̂x

�̂xzMore simply, in matrix notation: �ŷ/�x � m��̂ � [1 z w zw] 
�̂xw

�̂xzw

�̂x 1

�̂xz z
V(m��̂) � m�V(�̂)m � [1  z  w  zw] � V �

�̂xw w

�̂xzw zw

V(�̂x) C(�̂x,�̂xz) C(�̂x,�̂xw) C(�̂x,�̂xzw) 1

C(�̂x,�̂xz) V(�̂xz) C(�̂xz,�̂xw) C(�̂xz,�̂xzw) z
� [1  z  w  zw] 

C(�̂x,�̂xw) C(�̂xz,�̂xw) V(�̂xw) C(�̂xw,�̂xzw) w

C(�̂x,�̂xzw) C(�̂xz,�̂xzw) C(�̂xw,�̂xzw) V(�̂xzw) zw

In words, the variance of a sum of random variables and constants, such as an esti-
mated conditional effect, is the sum of all the variances of the variables (the estimated co-
efficients implied by the conditional effect), each multiplied by the square of their cofactor
(the associated independent variable(s)), plus two times each of the covariances of the vari-
ables (the estimated coefficients) times the product of their cofactors (the asociated inde-
pendent variable(s)).

To complete the set of graphs, the marginal effect of PS can also be graphed following
similar procedures.

party discipline on government  duration seems to depend on parliamen-
tary support but not on the number of governing parties in this model.

Figures 16 and 17 graph the estimated marginal effects of NP and
PD in the fully interactive model wherein the effect of each variable de-
pends on the values and the combination of the values of the other two
variables.48 Effective graphing techniques for fully interactive models
mirror those for pairwise-interaction models because in both cases the
effect of each variable depends on two others. The difference here is that
when, as in figure 16, for example, plotting the marginal effect of one
variable, for instance, PS, as a function of a second, NP, at different val-
ues of the third, PD, the marginal-effect lines will not be parallel be-
cause the effect of the first depends not just additively on the other two
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Fig. 14.  Marginal effect of Parliamentary Support for Government, pairwise-
interaction model, with 90 percent confidence intervals

but multiplicatively as well. The other major difference is the magnitude
of the confidence intervals; attempting to estimate such complexly inter-
active relations, with seven nested, and so highly colinear, linear-
 interaction terms, with just twenty-two observations and fourteen de-
grees of freedom, will almost always prove quixotic, as it does here. We
can distinguish from zero even at the low p � 0.10 level only (1) the in-
tuitive increasingly beneficial effect of parliamentary support as the
number of parties increases in a high party-discipline environment (fig.
16, PD � 1 line), (2) the converse increasingly beneficial effect of party
discipline as parliamentary support for a government of relatively few
parties surpasses about 50 percent (fig. 17b, NP � 2 line), and (3) the
decreasingly beneficial effect of party discipline as the number of parties
in a high parliamentary-support government rises (fig. 17a, PS � 80
line). Almost none of these estimated complexly conditional marginal
 effects is distinguishable from any other at almost any combination of
 independent-variable values. Researchers interested in exploring such
com plex context-conditionality empirically face challenges. This ex-
ample illustrates the importance of maximizing observations and degrees
of freedom and of leveraging theory to specify interactive hypotheses as
precisely as possible (as strongly urged in chap. 2 and as demonstrated
in Franzese 1999, 2002, 2003a).



Presentation of Predicted Values

Aside from presenting conditional effects, researchers may also wish to
present the predictions of y as x varies across a range of values, say, from
xa to xc, its sample minimum to maximum, while holding z constant at
some (meaningful and revealing) value. Changes in these predictions from
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Fig. 15.  Marginal effect of Party Discipline, pairwise-interaction model, with
90 percent confidence intervals



some particular ŷ�xa to ŷ�xc would reveal the effects of such changes in x
on y at that level of z as just discussed, but we may also wish to pre sent
tables or graphs of predictions per se as x varies, holding z fixed. (Recall
that xz will also vary with x, even though z is held constant.) Including
measures of uncertainty around these predictions is again imperative,
and, as with effects, each predicted value at some particular x and z values
has its own level of uncertainty attached to it. Thus, tables and graphs of
predicted values should also include standard errors and/or confidence
 intervals (variances, standard errors, significance levels) around each of
those predicted values.

In the standard linear-interaction model, the variance around each
predicted value is

V(ŷ � x,z) � V(�̂0 � �̂xx � �̂zz � �̂xzxz) (29)

Expanding this expression:49

V(ŷ) � V(�̂0) � x2V(�̂x) � z2V(�̂z) � (xz)2V(�̂xz) 

� 2xC(�̂0, �̂x) � 2zC(�̂0,�̂z) � 2xzC(�̂0,�̂xz)

� 2xzC(�̂x,�̂z) � 2x(xz)C(�̂x,�̂xz) � 2z(xz)C(�̂z,�̂xz) (30)
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Fig. 16.  Marginal effect of Parliamentary Support for Government, fully inter-
active model, with 90 percent confidence intervals

49. Note 30 gives the more general linear-algebraic formula for variances of linear
combinations of random variables and constants.



In words, the variance of a sum equals the sum of the variances plus two
times all the covariances. More completely, the variance of a sum of ran-
dom variables (here, the coefficient estimates) times constants (here, in-
dependent variables) is equal to the sum of the variances times the as -
sociated constants squared plus two times all the covariances times the
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Fig. 17.  Marginal effect of Party Discipline, fully interactive model, with 90
percent confidence intervals



product of their constant cofactors.50 As before, we will need the esti-
mated variance-covariance matrix of the parameter estimates (V(�̂)) to
calculate this, which can be easily recalled by an additional postestima-
tion command in most statistical software.51

Let us use our first empirical example to calculate the predicted num-
ber of presidential candidates corresponding with various values of Eth-
nic Groups and Runoff along with the variance of each predicted value.
Table 13 gave the variance-covariance matrix of the coefficient estimates
from this model. When Groups � 1 and Runoff � 0, we predict the
number of candidates to be

(Candidates � Groups � 1, Runoff � 0) � 4.303 � 0.979 � 1 

� 2.491 � 0 � 2.005 

� 1 � 0 � 3.324

Using equation (30), substituting Groups � 1 and Runoff � 0, yields the
following expression:

V(Candidates �Groups � 1, Runoff � 0) � V(�̂0) � 12V(�̂G)

� 02V(�̂R) � (0)(1)2 V(�̂GR)

� 2 � 1 � C(�̂0,�̂G)

� 2 � 0 � C(�̂0,�̂R)

� 2 � 1 � 0 � C(�̂0,�̂GR)

� 2 � 1 � 0 � C(�̂G,�̂R)

� 2 � 1 � (1 � 0) C(�̂G,�̂GR)

� 2 � 0 � (1 � 0) C(�̂R,�̂GR)

Substituting the estimated values of the variances and covariances of the
coefficients:

V(Candidates �Groups � 1, Runoff � 0) � 1.509 � 0.593 � 2 

� (�0.900) � 0.302

¨

¨ ¨

¨
¨

¨ ¨

¨ ¨
¨ ¨

¨ ¨

Theory to Practice 81

50. These are variances and confidence intervals for E(y�x,z � z0) and not forecast or
prediction errors, which would include also some uncertainty due to the variance of the re-
gression’s error term. See note 30.

51. Appendix B provides step-by-step STATA commands.



Table 22 presents the standard errors of each of the predicted values as
Ethnic Groups ranges from one to three, when Runoff takes the values
of zero and one. These predictions can also be graphed as described later.

Obviously, these calculations will become quite cumbersome, quite
quickly, in the presence of additional covariates. In fact, calculation of the
variance of predicted values requires attention to the levels of all the in-
dependent variables and to the variance of each estimated coefficient and
the covariances between each of the estimated coefficients. In our simple
model, which includes just three variables plus an intercept, this involves
ten terms. Adding just one more regressor (which did not interact with
any others) would require us to include five more terms in equation (30)!

One way to simplify the expression is to use matrix algebra to depict
ŷ and to calculate V(ŷ) (see note 30). Note that a predicted value, ŷ,
sums the products of sets of values of the right-hand-side variables and
their corresponding coefficients. Let Mh be a j-by-k matrix of values at
which x, z, and any other variables of interest in the equation are set,
where j refers to the number of values at which the predicted value is cal-
culated and k refers to the number of regressors, including the constant.
Suppose we were to hold z (and any of the other variables) at some log-
ically relevant value(s), say, z0, and examine the predicted values of ŷ at
a set of j evenly spaced values of x from xa to xc and correspondingly, as
xz takes j evenly spaced values from xaz0 to xcz0. In our standard equa-
tion, we have estimated coefficients for x, z, and xz, in addition to an in-
tercept. Matrix Mh is thus

xa z0 xaz0 1
xa�1 z0 xa�1z0 1

Mh � � �� � � 1
xc z0 xcz0 1

In Mh, the value of x increments evenly from some value xa to some other
value xc ; z is fixed at z0; and the interaction term xz varies as x does. The

¨
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TABLE 22. Confidence Intervals for Predicted Number of Presidential Candidates

Runoff � 0 Runoff � 1

90% Confidence 90% Confidence
ŷ s.e.(ŷ) Interval ŷ s.e.(ŷ) Interval

Groups � 1 3.324 0.550 [2.344, 4.305] 2.838 0.512 [1.925, 3.752]
Groups � 1.5 2.835 0.380 [2.158, 3.511] 3.351 0.387 [2.662, 4.041]
Groups � 2 2.345 0.532 [1.397, 3.292] 3.865 0.437 [3.104, 4.625]
Groups � 2.5 1.855 0.847 [0.345, 3.365] 4.378 0.600 [3.308, 5.447]
Groups � 3 1.366 1.204 [�0.780, 3.512] 4.891 0.827 [3.417, 6.364]



column of ones represents the constant (intercept). We can then express
the vector of predicted values ŷ as

�̂x

�̂zŷ � Mh�̂ where �̂ � � ��̂xz

�̂0

As a consequence, V(ŷ) � V(Mh�̂). Since Mh is a matrix of values at
which we set our independent variables, and since independent variables
are fixed in repeated sampling under classical regression assumptions,
the matrix Mh is a constant whereas �̂ is a random vector. Accordingly

V(ŷ) � V(Mh�̂) � MhV (�̂)M�h

where V(�̂) is the variance-covariance matrix of the estimated coefficients.
The j diagonal elements in V(ŷ) correspond with the variances of the

j predicted values of ŷ at various values included in Mh. As before, we
denote the estimate of V(�̂) as V(�̂).

Using our Candidates example, we can calculate the variance of the
predicted values of y as follows. First, varying values of Groups in 0.5
intervals from 1 to 3, holding Runoff to 0, gives

1 0  0  1
1.5 0  0  1

Mh � � 2 0 0 1�2.5 0  0  1
3 0  0  1

The first column indicates the values of Groups, the second column in-
dicates the values of Runoff, the third column indicates the values of
Groups � Runoff, and the fourth column represents the values for the
intercept. The estimated variances of the predicted numbers of candi-
dates at these values are therefore given by

1 0 0 1
0.593 0.900 �0.593 �0.900 

1.5 0 0 1
0.900 2.435 �1.377 �1.509 

V(ŷ) � MhV(�̂)M�h � � 2 0 0 1� � ��0.593 �1.377 0.885 0.900 
2.5 0 0 1

�0.900 �1.509 0.900 1.509 
3 0 0 1

1 1.5 2 2.5 3
0 0 0 0 0

� �              �0 0 0 0 0
1 1 1 1 1

¨ ¨

¨
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which produces the following symmetric matrix:

0.302  0.149  �0.005  �0.159  �0.312
0.149 0.143 0.138 0.133 0.128

V(ŷ) � ��0.005  0.138    0.281    0.424    0.567��0.159  0.133    0.424    0.715    1.007
�0.312  0.128    0.567    1.007    1.446

The diagonal elements are V(ŷ) for the respective values of Groups when
Runoff � 0. Statistical software or a basic spreadsheet program can
make these matrix calculations simple to implement.

Predicted values are often more effectively displayed when graphed

with confidence intervals, which can be constructed as ŷ � tdf,p 
�V(ŷ),
where, as before, tdf,p is the critical value in a t-distribution with df de-
grees of freedom that produces a p-value corresponding to half of the
probability outside of the desired confidence interval. For example,
lower and upper bounds of a 95 percent confidence interval will again
come from tdf,p of approximately 1.96 in large samples.

For this example, we calculate ŷ along evenly spaced values of Groups
from one to three, fixing Runoff first to zero and then to one. To calcu -
late confidence intervals, we need to calculate the variances of these pre-
dicted values and to identify a desired level of confidence. Given our small
sample, we again accept appreciable uncertainty, selecting a 90 percent
confidence interval, implying a critical value of t12,��0.10 � 1.782. The
upper bound and lower bound for the confidence intervals are therefore

Upper bound: ŷ � 1.782 � 
�V(ŷ)

Lower bound: ŷ � 1.782 � 
�V(ŷ)

For Groups � 1 and Runoff � 0, for example, V(ŷ) � 0.302 as seen ear-
lier, and so the 90 percent confidence interval is

Upper bound: 3.324 � 1.782 � 0.302 � 4.304

Lower bound: 3.324 � 1.782 � 0.302 � 2.345

Table 22 displays the confidence intervals calculated for the predicted
values of the number of presidential candidates as Groups ranges from 1
to 3 in steps of 0.5, with Runoff fixed to 0 and to 1. Figure 18 graphs
these predicted values and confidence intervals with Groups on the x-
axis, the predicted values on the y-axis, and the value of Runoff fixed.

Figure 18 displays straight lines, indicating how the predicted num -
ber of candidates changes as Groups varies, in the presence and absence

¨

¨

¨

¨

¨
¨
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of a runoff system. The hourglass curves indicate the degree of certainty
associated with each predicted value, ŷ. As with estimated effects, these
predictions have greatest certainty around the mean of Groups and less
certainty at more extreme and, especially, out-of-sample values.

Table 22 reinforces what we have already seen in this example:
 substantial overlap in the 90 percent confidence intervals for the pre-
dicted number of presidential candidates in the presence and absence of
a runoff system when only one ethnic group exists but much less over-
lap in these confidence intervals at higher numbers of Groups. These
results suggest that the impact of runoff systems on the number of
 candidates becomes more discernibly positive statistically as Groups
increases.

Tables 23 and 24 provide confidence intervals for various predicted
values in two of our other examples: the U.S. support for social welfare
model and the baseline model of government duration (with just the in-
teraction between the number of governing parties and parliamentary
support). The results in table 23 are easily comprehensible, given that the
interaction involves only two binary variables: Female and Republican.
Table 23 shows the negligible difference in predicted social-welfare sup-
port among Democrats (Republican � 0) by gender, with the confidence
intervals around those predicted values overlapping substantially (in fact,
the confidence interval for male Democrats entirely encloses the con-
fidence interval for female Democrats). We also see that social- welfare
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Fig. 18.  Predicted Number of Candidates, with 90 percent confidence intervals



 support among Republican males is appreciably lower than among Re-
publican females. This gender gap among Republicans is statistically dis-
tinguishable from zero in that the confidence intervals for male and fe-
male Republicans do not overlap. The same information could also be
presented graphically, but the simplicity of the table may recommend tab-
ular form instead.

Table 24 adds 90 percent confidence intervals to the predicted values
presented in table 6. It is less immediately interpretable, given the
plethora of values that NP and PS can take. A graph may be the most ef-
fective means of presenting the predicted values and their associated con-
fidence intervals in cases like this, as shown in figure 19.

For variables that enter nonlinearly—for instance, in the example
where parliamentary support for government is quadratically related
to government durability—the procedure previously outlined still ob-
tains. Recall that figure 2 plotted estimated government duration as a
quadratic function of parliamentary support. Accordingly, figure 10
adds 90 percent confidence intervals to the predicted value curve, using
the results from the model in table 7 and calculating the confidence in-
terval by

GD � �̂0 � �̂psPS � �̂ps2PS2

V(GD) � V(�̂0 � �̂psPS � �̂ps2PS2)

� V(�̂0) � PS2 � V(�̂ps) � PS4V(�̂ps2) � 2PS � C(�̂0,�̂ps)

� 2PS2 � C(�̂0,�̂ps2) � 2PS3 � C(�̂ps,�̂ps2)

90% c.i. � (�̂0 � �̂psPS � �̂ps2PS2)                    

V(�̂0)� PS2 � V(�̂ps) � PS4V(�̂ps2)

� 1.73 � 2PS � C(�̂0,�̂ps) �2PS2 � C(�̂0,�̂ps2)

� 2PS3 � C(�̂ps,�̂ps2)

In the log-transformed-PS model, we can also graph the predicted
government duration, at selected values of NP and PD, along values of

¨¨ ¨¨ ¨ ¨

¨ ¨¨ ¨ ¨ ¨¨̈ ¨¨
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TABLE 23. Confidence Intervals for Predicted Support for Social Welfare

Republican � 0 Republican � 1

95% 95%
Confidence Confidence

ŷ s.e.(ŷ) Interval ŷ s.e.(ŷ) Interval

Female � 0 0.745 0.0110 [0.724, 0.767] 0.525 0.0110 [0.503, 0.546]
Female � 1 0.742 0.0094 [0.724, 0.760] 0.605 0.0113 [0.583, 0.627]

�                             �
0.5



parliamentary support. The 90 percent confidence interval can be calcu-
lated around GD as

GD � �̂0 � �̂npNP � �̂ln(ps)ln(PS) � �̂npln(ps)NP � ln(PS) 

� �̂pdPD

V(GD) � V(�̂0 � �̂npNP � �̂ln(ps)ln(PS) � �̂npln(ps)NP � ln(PS) 

� �̂pdPD)

90% c.i. � GD � 1.74 
���V(GD)

The estimated government duration, calculated for NP � 2 and NP
� 4, when PD � 1, and accompanying confidence intervals appear in fig-
ure 20.

¨ ¨̈

¨̈
¨

¨
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TABLE 24. Confidence Intervals for Predicted Government Duration

NP � 1 NP � 2 NP � 3 NP � 4

90% 90% 90% 90%
Confidence Confidence Confidence Confidence

ŷ Interval ŷ Interval ŷ Interval ŷ Interval

PS � 40 33.05 [23.87, 42.23] 20.42 [13.94, 26.90] 7.79 [�2.37, 17.96] �4.84 [�21.21, 11.54]
PS � 50 31.87 [26.59, 37.15] 23.93 [19.86, 28.00] 15.99 [9.28, 22.69] 8.05 [�2.58, 18.67]
PS � 60 30.70 [25.87, 35.53] 27.44 [23.99, 30.89] 24.18 [19.92, 28.45] 20.93 [14.43, 27.43]
PS � 70 29.52 [21.11, 37.93] 30.95 [25.67, 36.23] 32.38 [27.58, 37.17] 33.81 [26.33, 41.29]
PS � 80 28.34 [15.31, 41.38] 34.46 [26.42, 42.50] 40.57 [32.86, 48.28] 46.69 [34.27, 59.10]

Note: Predicted values are calculated at given values, setting PD � 1.

Fig. 19.  Predicted Government Duration, with 90 percent confidence intervals



Presentation of Differences of Predicted Values

Predicted values display how variation along some range of an indepen-
dent variable, x, affects the level of the dependent variable, conditional
upon a third independent variable, z. Researchers may sometimes wish
to present the estimated effects of discrete changes rather than marginal
changes of independent variables involved in interaction terms: �y/�x
rather than �y/�x. For example, one might want to plot the estimated ef-
fect of some substantively motivated counterfactual increase or decrease
in an independent variable, say, of a 10 percent increase in parliamentary
support; or of a unit change in binary indicators like gender, partisan-
ship, runoff, or party discipline; or of a change from the level of some
well-known exemplar to another (e.g., from the average number of gov-
erning parties in the United Kingdom, 1, to that of the Netherlands, 3.3).
Provided that the variables involved in the estimated conditional effect
enter only linearly, as in all of our examples except those using the
square or natural log of parliamentary support (tables 7 and 8), doing so
requires only a very simple extension of our preceding discussion of pre-
senting marginal effects.

In regression models where the independent variables enter only lin-
early or linear interactively, the estimated marginal effect of any variable
is equal to the estimated effect of a unit increase in that variable. In a lin-
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Fig. 20.  Predicted Government Duration, log-transformation interactive model,
with 90 percent confidence intervals



ear-interaction model involving x, z, and xz, for example, �ŷ/�x � �̂x �

�̂xzz and �ŷ/�x � �̂x�x � �̂xz (�x) z, which gives �ŷ/�x � �̂x � �̂xzz for
�x � 1. Of course, their estimated standard errors are also identical.
Thus, figures 4–9 and 13–17 all give the estimated effects of a unit in-
crease as well as the estimated slope (or effect of a marginal increase) of
their respective independent variables in their respective models.52 More
generally, if we wanted to present the effect of some discrete change other
than �x � 1 in a linear-interaction model, we need only replace the mar-
ginal effect, �ŷ/�x � �̂x � �̂xzz, with that of the change, �ŷ/�x � �̂x�x
��̂xz (�x)z, which amounts simply to multiplying the marginal effect by
�x: �ŷ/�x � �x(�̂x � �̂xzz). To estimate standard errors for confidence in-
tervals around differences in predicted values, we apply the usual variance

formula: V(�ŷ/�x)� (�x)2 V(�̂x) � z2 (�x)2 V(�̂xz) � 2z (�x)2 C(�̂x,�̂xz),
that is, we multiply the estimated variance of the estimated marginal ef-

fect, V(�ŷ/�x)� V(�̂x) � z2V(�̂xz)� 2zC(�̂x,�̂xz), by (�x)2.
We can use the estimates in table 22 to determine the effect of a

Runoff at various values of Group using the difference method simply
by subtracting the first from the fourth column, that is, (ŷ � Groups,
Runoff � 1) � (ŷ � Groups, Runoff � 0). Recall that the case of (xc �

xa) � 1 produces exactly the same results as the derivative method; the
differences in predicted values between systems with runoffs and with-
out runoffs, at given values of Groups (and the corresponding estimates
of uncertainty around those differences in predicted values), appear in
table 15.

More generally, for binary variables like our Runoff, Gender, Parti-
sanship, or Party Discipline, the only discrete changes meriting consid -
eration are unit increases or decreases, �x � �1, and so the estimated
marginal effects and confidence intervals plotted in figures 4, 5, 7, 15,
and 17 are all identical to the estimated conditional effects of and confi-
dence intervals for a positive switch in the value of that binary indicator.
Similarly, the estimated marginal effects of Groups, NP, and PS and con-
fidence intervals plotted in figures 6, 8, 9, 13, 14, and 16 are all identical
to the estimated effects and confidence intervals for unit increases in
those (nonbinary) variables. If we had wanted to present the estimated
effects of, say, a 10 percent rather than a unit (1 percent) increase in par-
liamentary support, for example, we would simply have multiplied the

¨ ¨ ¨ ¨
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52. In fact, in our “log-transformed” model of government duration from table 8, the
effect of a unit increase in the number of governing parties, which itself enters the model
linearly, is linear in the natural log of parliamentary support, and so, had ln(PS) been the
x-axis of figure 12, the same would apply for that presentation.



conditional effect line in figures 9, 14, and 16 by 10, the variance in the
formula for the confidence intervals associated with those lines by 102,
and relabeled the figure as “Effect of a 10% Increase in Parliamentary
Support . . .”

Graphs of the estimated effects of discrete changes would therefore
simply rescale the marginal-effect graphs already shown. We can demon-
strate this formally for the standard linear-interaction model as follows.
The difference between ŷa and ŷc, that is, ŷ at x � xa subtracted from ŷ
at x � xc, is

ŷc � ŷa � �̂0 � �̂xxc � �̂zz0 � �̂xzxcz0 � (�̂0 � �̂xxa � �̂zz0 � �̂xzxaz0)

� �̂x(xc� xa) � �̂xzz0(xc � xa)

� (xc � xa)(�̂x � �̂xzz0)

The variance of that difference is then

V(ŷc � ŷa) � V[(xc � xa) (�̂x � �̂xzz0)]

� (xc � xa)2V[(�̂x � �̂xzz0)]

� (xc � xa)2[V(�̂x) � z0
2V(�̂xz) � 2z0C(�̂x, �̂xz)]

So, in the case of (xc � xa) � 1, we have exactly the same results as the
derivative method, and in the case of (xc � xa) � �x we have the same
results rescaled multiplicatively by �x.

We could also tabulate and/or graph the difference in predicted val-
ues as the number of societal groups changes, by one unit (say, from
Groups � 1 to Groups � 2 or, equivalently, from Groups � 2 to
Groups � 3), or by two units (from Groups � 1 [the sample minimum]
to Groups � 3 [just above the sample maximum]), by the presence or
absence of a runoff. The differences in predicted values that correspond
with a one-unit and a two-unit shift in Groups, by Runoff, appear in
table 25. We could also present a graph containing the difference in
predicted values associated with a two-unit shift in Groups, but since
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TABLE 25. Confidence Intervals for Differences in Predicted Number of Candidates

Runoff � 0 Runoff � 1

90% 90%
Confidence Confidence

ŷc � ŷa s.e.(ŷc � ŷa) Interval ŷc � ŷa s.e.(ŷc � ŷa) Interval

�Groups � 1 �0.979 0.770 [�2.352, 0.394] 1.026 0.540 [0.064, 1.988]
�Groups � 2 �1.958 1.541 [�4.704, 0.787] 2.052 1.079 [0.129, 3.976]
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there are only two points to be graphed, a table like table 25 is just as
informative.

When variables enter the regression models nonlinearly, however, as in
the quadratic- and log-transformed-PS models of tables 7 and 8, the ef -
fect of a discrete change from one value of x to another can be quite dif-
ferent than the effect of a marginal (i.e., infinitesimal) change at that x.
That is, except for straight lines, derivatives and slopes differ from differ-
ences. In figure 2, for example, the marginal effect of parliamentary sup-

port at PS � 50 (i.e., the derivative or slope at that point) is �GD/�PS �

�̂ps � 2�̂ps2 50 � �̂ps � 100 � �̂ps2. The effect of a unit change from PS �

50 to 51 would be �GD/�PS � (�̂ps 51 � �̂ps2 512) � (�̂ps 50 � �̂ps2 502)
� �̂ps � �̂ps2 (512 � 502) � �̂ps � �̂ps2 101.53 The estimated variances
would differ accordingly. The estimated effect of a 10 percent increase

from PS � 45 percent to 55 percent, �GD/�PS � (�̂ps 55 � �̂ps2 552) �
(�̂ps 45 � �̂ps2 452) � �̂ps 10 � �̂ps2 1,000, is likewise not equal to the slope

at PS � 45, �GD/�PS � �̂ps � 90 �̂ps2, and their standard errors differ
also.

Similarly in the log-transformed-PS model, the effects of discrete
changes in parliamentary support depend not only on the number of
governing parties but on the magnitudes and values of those changes in
PS. The estimated effect of a 10 percent increase, from PS � 45 percent
to PS � 55 percent, and its standard error would be

(GD�PS � 55) � (GD�PS � 45) � �̂ln(ps) (ln55 � ln45) � �̂npln(ps)NP

� (ln55 � ln45)

V((GD�PS � 55) � (GD�PS � 45)) � (ln55 � ln45)2

� (V(�̂ln(ps)) � NP2 � V(�̂npln(ps))

� 2NP � C(�̂ln(ps),�̂npln(ps)))

As these two examples illustrate, the conditional effect of a discrete
change in an independent variable that enters an interaction model non-
linearly depends not only on the values of the variables with which it in-
teracts but also on the magnitude of the change and from what starting
point. We would not, therefore, generally recommend graphing but
rather recommend tabulating sets of estimates like these for considera-
tion and discussion.

¨¨ ¨¨ ¨

¨

¨

¨ ¨
¨

¨

53. We can focus only on the terms that would involve �x because the rest of the equa-
tion drops from these differences.



Distinguishing between Conditional Effects 
and Predicted Values

How do tables and graphs of conditional effects and those of predicted
values differ? Both reveal information about the relation of x to y and
how this relationship changes as z varies but in slightly different ways.
Graphs and tables of derivatives of or differences in predicted values
show directly how the effect of x on y changes as z changes. Graphs and
tables of predicted values show how the level of ŷ, that is, the prediction
for y, changes as x changes, at particular levels of z. By comparing sev-
eral of these predicted levels, one can also grasp the effects of x or of z
on y and how they change as the other variable changes, but, in pre-
dicted-level tables and figures, the comparison of effects is less direct and
the uncertainties related refer to individual predictions and not to these
differences, that is, not to the effects. Selection of one type of table or
graph over the other therefore largely depends on the researcher’s pre -
sentational goals. Either method can effectively convey the substantive
results from empirical models involving interactive terms; we stress,
however, that either sort of table or graph should incorporate measures
of uncertainty into its presentation.
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T H E  M E A N I N G ,  U S E ,  A N D  A B U S E  

O F  S O M E  C O M M O N  

G E N E R A L - P R A C T I C E  R U L E S

Having discussed formulation of interactive hypotheses, and inter -
pretation and presentation of effects, we turn now to clarify some

general-practice rules often applied in the social sciences.

Colinearity and Mean-Centering the Components 
of Interaction Terms

One common concern regarding the estimation of interactive models is
the (multi)colinearity, or high correlation, among independent variables
induced by multiplying regressors together to create additional regres-
sors. Colinearity, as social scientists well know, induces large standard er-
rors, reflecting our low confidence in the individual coefficients estimated
on these highly correlated factors. What is sometimes forgotten is that
these large standard errors are correctly large; the effect of x controlling
for other terms (i.e., holding them constant) is hard to determine with
much certainty if x and other terms correlate highly. These large stan-
dard errors accurately reflect our high degree of uncertainty in these con-
ditions. These perhaps unfortunate, but very real, facts regarding co -
linearity led Althauser (1971), for example, to argue against the use of
interactive terms at all. However, to omit interactions simply because
 including them invites a greater degree of uncertainty in parameter esti-
mates is to misspecify intentionally our theoretical propositions. This



 assures at least inefficiency but most likely induces bias due to standard
omitted-variable-bias considerations: namely, if the omitted factor, xz,
(partially) correlates with the included factor, x, and (partially) correlates
with the dependent variable, y, then bias results. The sign and magnitude
of the bias are given by the product of these two partial coefficients.

Scholars therefore struggled valiantly for some technical artifice to re-
duce interaction-induced colinearity. However, the problem of colinear-
ity is “too little information.” As such, the only routes around the prob-
lem available to researchers are to ask the data questions that require less
information (e.g., only first-order questions, like those in table 10 or
table 12) or to obtain more information by drawing new data (preferably
less correlated, but more data will help regardless) or by relying more
heavily upon the theoretical arguments/assumptions to specify models
that ask more precise questions of the data than do generic linear-inter-
active models (e.g., Franzese 1999, 2002, 2003a).

Scholars have instead devoted inordinate attention to illusory co -
linearity “cures.” The most commonly prescribed “cure” is to “center” the
variables (i.e., subtract their sample means or “mean-deviate” them) that
comprise the interactive terms. Smith and Sasaki (1979) offered center-
ing as a technique that would improve substantive interpretation of the
individual coefficients, and we agree that it might facilitate interpreta-
tion in some substantive contexts. Tate (1984) argued that, although
 centering should not change the substantive effects (actually, it will not:
see the discussion that follows), it “may improve conditioning through
reduction of colinearity” (253). Others, including Morris, Sherman, and
Mansfield (1986) and Dunlap and Kemery (1987), recommend centering
less circumspectly. The centering technique of Cronbach (1987) has at-
tained considerable acceptance in social science, perhaps due to the pro-
motion of it by Jaccard, Turrisi, and Wan (1990). Unfortunately, Cron-
bach’s clarification on the extremely limited value of centering seems less
widely known.

To be sure, the centering procedure of Cronbach (1987) is harmless;
however, it also offers no help against the “too little information” prob-
lem of colinearity, if understood correctly. Our concern is that centering
seems widely misunderstood and misinterpreted. Some existing scholarly
research claims, wrongly, that centering helps evade colinearity in some
manner that actually produces more certain effect estimates. Centering
adds no new information of any sort to the empirical estimation, and so
it cannot possibly produce more precise estimates. Centering merely
changes the substantive question to which the coefficients and t-tests of
those coefficients refer.
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Consider this standard linear-interactive model:

y � �0 � �xx � �zz � �xzxz � � (31)

Cronbach (1987) suggested subtracting the sample means from each of
the independent variables involved in the interaction and multiplying the
resulting demeaned variables together for the interaction term. The
mean-centered model, then (using � to represent coefficient values re -
sulting from use of the centered data), is as follows:

y � �0* � �x*x* � �z* z* � �x*z*x*z* � �*  (32)

where x* � x � x̄ and  z* � z � z̄.
Cronbach (1987) argued that rescaling the variables thusly could in-

sure against computational errors—that is, errors that are literally com-
putational: deriving from inescapable rounding errors in translating
from computer binary to human base-ten—that severe colinearity might
induce.1 Cronbach (1987) also noted that centered and noncentered
models “are logically interchangeable, and under most circumstances it
makes no difference which is used” (415). Given the many thousands of
times computing precision has increased since Cronbach’s writing, the
computational concern has no current practical relevance in social sci-
ence, and so it now makes no difference under any circumstances.

Because centering does not affect the substance of any empirical esti-
mation in any way, because it will not affect the computational algo-
rithms of any modern statistical software, and because it is so widely
misunderstood in the field, we join Friedrich (1982), Southwood (1978),

1. The computational issue here involves matrix inversion, namely, the (X�X)�1 in
OLS formulas for coefficient and standard-error estimates, some of whose columns (i.e., in-
dependent variables) may correlate nearly perfectly. If columns of X correlate perfectly, the
determinant of (X�X), which appears in the denominator of the formula for (X�X)�1, is
zero. Division by zero is, of course, impossible; therefore, obtaining distinct coefficient es-
timates (and thus standard errors) when (some) columns of X correlate perfectly is impos-
sible. All modern regression software warns of perfect colinearity when it obtains a zero
determinant before allowing the computer to crash trying to divide by zero. Most warn of
near-perfect colinearity well short of obtaining identically zero for that critical determinant,
that is, well short of perfect colinearity, because the translation from the base-ten data ma-
trix to the binary of computers involves rounding error. When something near zero appears
in a denominator and contains slight rounding error, the final answer could exhibit mas -
sive error. This is the concern that Cronbach raised. The multiplicative terms in interactive
regressions, he feared, could be near enough to perfect colinearity to cause severe binary-
to-base-ten rounding-error problems. However, since his writing, computers have become
many thousands of times more exact in their binary calculations’ approximation to base
ten, meaning that even this computational concern is no longer present in any practical so-
cial-science context.
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and others in strongly advising the abandonment of the practice or, at
least, far greater care in interpreting and presenting the results following
its implementation. To clarify what centering does to the numeric and
substantive estimates of an interactive analysis, which is something and
nothing, respectively, consider again our basic linear-interaction model
and its centered version, which appear in equations (31) and (32), re-
spectively. Starting from equation (32), and substituting terms, we see
that

y � �0* � �x* (x � x̄) � �z* (z � z̄) � �x*z* (x � x̄)(z � z̄) � �* (33)

y � �0* � �x*x � �x*x̄ � �z*z � �z*z̄ � �x*z*xz � �x*z*x̄z � �x*z*xz̄

� �x*z*xz� � �*

y � (�0* � �x*x̄ � �z*z̄ � �x*z*xz�) � (�x* � �x*z*z̄)x � (�z* � �x*z*x̄)z

� �x*z*xz � �* (34)

Comparing the centered equation in (34) with the original model in
(31) highlights the exact correspondence of results between the centered
and uncentered regression models:

�0 � �0* � �x*x̄ � �z*z̄ � �x*z*xz�

�x � �x* � �x*z*z̄

�z � �z* � �x*z*x̄

�xz � �x*z*

Collecting terms, we see that the first parenthetical expression in
equation (34) contains its set of constant terms and thus equals the in -
tercept, �0, from (31). The second parenthetical expression in (34) is its
ultimate coefficient on x, which is equal to �x from (31), and the third
parenthetical expression is the ultimate coefficient on z in (34), which
equals �z in (31). The fourth term is the coefficient on xz in each model.
Trivially, since the right-hand-side models are mathematically inter-
changeable, the estimated residuals and therefore the estimated residual
variance from the centered and uncentered models are also identical.

As we explained previously, researchers’ common troubles arise when
they confuse coefficients with effects. We know, for example, that the
marginal effect of x on y in equation (31) would be �y/�x � �x � �xzz.
The marginal effect of x* on y given equation (32) would be �y/�x* �
�x* � �x*z*z*. Since �x � �x* � �x*z*z̄, we can express �x* � �x � �x*z*z̄.
Therefore
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�y/�x* � �x � �x*z*z̄ � �x*z*z*

Then, given that z* � z � z̄, we have

�y/�x* � �x � �x*z*z̄ � �x*z*z � �x*z*z̄ � �x � �x*z*z

Finally, since �xz � �x*z*, we conclude

�y/�x* � �x � �xzz � �y/�x

Stated directly, the point is obvious: the effect of a marginal increase
in the centered version of x is identical to the effect of a marginal in-
crease in uncentered x. The same identity applies to the effects of z, of
course. We reiterate: centering does not change the estimated effects of
any variables.

Further, the estimated variance-covariances (i.e., standard errors, etc.)
of those effects are also identical. Thus, the estimated statistical certainty
of the estimated effects is also unchanged by centering. For the uncen-
tered data, V(�ŷ/�x) � V(�̂x) � z2V(�̂xz) � 2zC(�̂x,�̂xz). Using the mean-
centered model:

V(�ŷ/�x*) � V(�̂x*) � (z*)2V(�̂x*z*) � 2z*C(�̂x*,�̂x*z*)

Substituting �̂x* � �̂x � �̂x*z*z̄ and �̂x*z* � �̂xz

V(�ŷ/�x*) � V(�̂x � �̂xzz̄) � (z*)2 V(�̂xz) � 2z*C(�̂x � �̂xzz̄, �̂xz)

V(�ŷ/�x*) � V(�̂x) � z̄2 V(�̂xz) � 2z̄C(�̂x,�̂xz) � (z*)2 V(�̂xz) 

� 2z*C(�̂x � �̂xzz̄,�̂xz)

Rearranging terms and substituting z* � z � z̄:

V(�ŷ/�x*) � V(�̂x) � z̄2V(�̂xz) � 2z̄C(�̂x,�̂xz)

� (z � z̄)2V(�̂xz) � 2(z � z̄)C(�̂x,�̂xz) � 2(z � z̄)z̄V(�̂xz)

V(�ŷ/�x*) � V(�̂x) � z2V(�̂xz) � 2zC(�̂x,�̂xz) � V(�ŷ/�x)

The variances of the estimated marginal effects of the centered x and
of the uncentered x are identical. The same holds for the variances of the
estimated marginal effects of z and mean-centered z, of course. As with
the coefficients, the numeric values of the elements in the variance-
 covariance matrices for the coefficients using uncentered and centered
data will naturally differ from each other, but exact correspondence in the
estimated effects and the estimated variances of effects can be derived
through algebraic manipulation of these values. As an example, recall
that �x � �x* � �x*z*z̄. This implies that V(�̂x) � V(�̂x* � �̂x*z*z̄) � V(�̂x*)
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� z̄2V(�̂x*z*) � 2z̄C(�̂x*, �̂x*z*). Hence, while the estimated coefficients
and variance-covariance matrices of coefficients will differ numer-

ically (i.e., �̂x � �̂x* and V(�̂x) � V(�̂x*)), the estimated effects and the
precision of the estimated effects of the variables will be identical, re-
gardless of whether the data are centered or uncentered. Again, we warn
the reader against confusing coefficients with effects.

If all estimates of the substantive effects and all estimates of the cer-
tainty of those substantive effects are identical whether the data are mean-
deviated or left uncentered, how, one might wonder, can some key coeffi-
cient estimates, their standard errors, and the corresponding t-statistics
differ? The answer is simply that the coefficients and associated standard
errors and t-statistics do not refer to the effects at the same substantive
values of the regressors across centered and uncentered models. For ex-
ample, in our standard model, y � �0 � �xx � �zz � �xzxz � �, the co-
efficient �x gives the effect of a unit increase in x when z equals zero; its
standard error and the resulting t-ratio refer to the certainty of that x ef-
fect at that particular z value. In y � �0* � �x*x* � �z*z* � �x*z*x*z* 
� �*, the coefficient �x* gives the effect of a unit increase in x* (or x, since
a unit increase in x or x* is the same thing) when z* equals zero, which
is not at all the same value as when z � 0 (assuming, of course, that z̄ �
0). Since z* � z � z̄, the centered z* equals zero when the uncentered z
equals its mean, not when z � 0 (except in the specific case where z̄ � 0).
The standard error of this coefficient estimate, �̂x*, and the resulting t-
ratio also refer to the certainty of the effect of a one-unit change in x at
this different z � z̄ value. Coefficients, standard errors, and t-statistics dif-
fer in the centered and the noncentered models because they refer to dif-
ferent substantive quantities, not because either model produces different,
much less any better, estimates of effects than does the other.

Centering can, in this manner, actually be useful for substantive in-
terpretation in some contexts. If interpreted carefully and understood
fully, centering sometimes can facilitate a more substantively grounded
discussion of the empirical analysis. If z cannot logically equal zero, then
substantive interpretation of �x is vacuous, but examining the effect of x
when z is equal to its sample mean might be substantively revealing. If
so, researchers might advantageously center z around its mean to aid
substantive interpretation and discussion of �x. That is, centering z
around its mean allows one to interpret the coefficient on x as the effect
of x when z equals its mean rather than when z equals zero. Further, it
allows the researcher to interpret the t-statistic on �̂x as the statistical sig-
nificance of x when z happens to equal its mean, which may likewise sim-
plify discussion in some contexts.

¨ ¨
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Accordingly, our concern is that researchers too often misinterpret
the results of centering—and have come to the mistaken conclusion that
centering alters the estimates of effects or the estimated significance of
 effects. We recommend that centering transformations, if applied at all,
be applied only with the aim to improve substantive presentation, not,
mistakenly, to improve (apparent) statistical precision and certainly not,
reprehensibly, to move the value of z to which the standard t-ratio refers
so as to maximize the number of asterisks of statistical significance on
reported t-tests. The substantive interpretation of the effects and the
 certainty of those effects are completely unaffected by this algebraic
sleight-of-hand.

Including x and z when xz Appears

To estimate models containing multiplicative interaction terms, most
texts advise a hierarchical testing procedure: that is, if xz enters the
model, then x and z must also. If wxz appears, then all (six) of the lower
order combinations (x, w, z, xw, xz, wz) must appear also, and so on
analogously for higher order interactions. Allison (1979), for example,
writes, “[The] common rule . . . is that testing for interaction in multiple
regression should only be done hierarchically . . . If a rationale for this
rule is given at all, it is usually that additive relationships somehow have
priority over multiplicative relationships” (149–50). This rule is prob -
ably an advisable one, if researchers must have a rule. Certainly it is a
much safer rule than an alternative proviso that one can include or not
include components to interactions with little concern or consideration.
However, we believe that researchers must understand the logical foun-
dations of the models they estimate and the meaning and purpose of any
proffered rule, instead of merely following such rules by rote. We argue
instead for theoretically driven empirical specifications with better ap-
preciation of the assumptions underlying alternative models. While the
rule of including x and z if including xz may be a quite reasonable appli-
cation of Occam’s razor and is often practically advisable, it is neither
logically nor statistically strictly necessary.

As proof that the rule is not logically necessary, notice that one can de-
compose any variable into the product of two or more others; therefore,
strict adherence to this rule would actually entail infinite regress. As a
substantive example, note that real GDP (per capita) equals nominal GDP
times a price-index deflator (times the population inverse); conversely,
nominal GDP (per capita) is real GDP times a price index (times the pop-
ulation inverse). Nothing statistically or logically requires researchers to
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include all of these components in every model containing some subset
of them. Researchers should, instead, estimate the models their theories
suggest.

That said, several good reasons to follow the rule exist. First, given the
state of social-science theory, the models implied by theory will often be
insufficiently specified as to whether to include x and/or z in an interac -
tive model. Due scientific caution would then suggest including x and z to
allow the simpler linear-additive theory a chance. (This is Occam’s razor.)
Failing to do so would tend to yield falsely significant estimates of coeffi-
cients on xz if, in fact, x or z or both had just linear-additive effect on y.
Second, inclusion of the x and z terms in models involving xz allows a
nonzero intercept to the conditional effect lines, such as those plotted in
chapter 3. This is important because, even if the effect of x on y is truly
zero when z is zero, if this conditional relationship is nonlinear, allowing
a nonzero intercept to the linear-interactive estimates of the truly nonlin-
ear interaction (by including x and z) will enhance the accuracy of the lin-
ear approximation. Third, and perhaps most important, even when the
theory clearly excludes x and/or z from the model, that is, when it un-
equivocally establishes the effect of one (or both) variable(s) to be zero
when the other is zero, the researcher can and should test that prediction
and report the certainty with which the data support the exclusion. If that
test supports exclusion, then both theory and evidence recommend ex -
clusion of the components, and continued inclusion would be the mis-
specification of the model. For this sort of empirical exploration, only
finding a coefficient expected to be zero in fact to be estimated as (very
close to) zero and, highly preferably, with small standard error is clear ev-
idence from the data that the assumption holds. That is, clearest support
for the assumption comes from failure to reject because the estimate is
with considerable certainty near zero rather than because the estimate has
very large standard error. In sum, then, this rule, as an application of
Occam’s razor, is a safer adage than its opposite, but researchers should
still, first, understand the basis for the rule and, second, should not shy
from breaking it if their theory and the data strongly suggest doing so.

We now elaborate these points more fully and formally. If the theory
expressly excludes z from having any effect on y when x is zero—that is,
nonzero presence of x is a necessary condition for z to affect y, the cor-
rect model is

y � �0 � �xx � �xzxz � � (35)

By this model, as theory demands, the effect of z on y, �y/�z, equals
�xzx, which is zero when x � 0. Estimating this model assumes that x
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must be present for z to affect y but does not allow the data to adjudi -
cate the question. If z does affect y even when x is zero, equation (35)
would suffer omitted-variable bias, with coefficient estimates wrongly at-
tributing the omitted variable’s effects to the variable(s) that do enter the
model and that correlate with the omissions. In this case, the omission
will most likely imply a biased �xz estimate (primarily). Regression esti-
mation will attribute some of the true-but-omitted effect of z when x �

0 to z’s interaction with x, and so the estimate of �xz will be too large
(small) when this true-but-omitted effect is positive (negative). Thus, if
the omitted effect is positive, the estimated effect of z on y (�ŷ/�z � �̂xzx)
will reflect a greater conditional effect than truly exists (i.e., greater slope
to this effect line), with underestimation of the effect of z on y at low val-
ues of x and overestimation at high values of x. Conversely, the effect of
x on y (�ŷ/�x � �̂x � �̂xzz) will be estimated as more conditional upon z
than it truly is, implying too great a slope to this effect line and, likely,
also too low an intercept (�̂x) to that effect line.

Rather than assume such necessity clauses by omitting key interaction
components, we suggest that researchers test them by first estimating the
model including all lower order components:

y � �0 � �xx � �zz � �xzxz � � (36)

An insignificant coefficient of �z here might then support the exclusion
theory and provide some justification for proceeding with the necessity
clause in place. But recall that a t-test on �̂z only refers to the effect of z
when x equals zero. The theory concludes that �z should equal zero, and
so we would hardly want to accept that hypothesis merely because we
fail to reject it at some generous significance level like p � 0.10. Recall
that failure to reject can occur with small coefficient estimates and small
standard errors, small coefficient estimates and large standard errors, or
large coefficient estimates and larger standard errors. Only the first of
these should give the researcher great comfort that he or she may esti-
mate the model that assumes the necessity clause by omitting (an) inter-
action component(s); the second gives less support for such a restriction;
and the last gives very little or none at all.

In summary, estimating models like (36) that include all interaction
components when true models, for instance, (35), actually exclude them
will cost researchers some inefficiency if not bias. Estimating (36) when
the true model is (35) involves trying to estimate more coefficients than
necessary, which implies inflated standard errors. Moreover, these in-
cluded-but-unnecessary coefficients, �x or �z, are on variables, x or z, that
are likely highly correlated with the necessary ones, xz, which implies
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greatly inflated standard errors. Thus, the inefficiency of overcautious in-
teraction-component inclusion could easily and often be severe enough to
lead researchers to miss many interactions actually present in their sub-
ject. Especially as theory advances to grapple with the complex condi -
tionality of the subjects that social scientists study, and as empirical mod-
els attempt to follow even though data remain stubbornly scarce, such
inefficiency can very easily become unaffordable. Thus, we recommend
that researchers (a) acknowledge and discuss the assumptions/arguments
underlying the decision to omit or to include components of their inter-
action terms, (b) gauge statistically the certainty with which the data sup-
port those assumptions, and then (c) apply Occam’s razor by following
hierarchical procedures unless theory and data clearly indicate that doing
so is unnecessary and overly cautious.
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E X T E N S I O N S

We turn next to some more technical statistical concerns often raised
regarding interaction-term usage in regression analysis. The first

issue regards separate-sample versus pooled-sample estimation of inter-
active effects. The second issue concerns estimation and interpretation of
interaction terms in nonlinear models, including qualitative dependent-
variable models like logit and probit models of binary outcomes. The
third issue concerns modeling and estimating stochastically (rather than
determinately) interactive relationships.1

Separate-Sample versus Pooled-Sample Estimation 
of Interactive Effects

Researchers often explore the interactive effects of nominal (binary, cat-
egorical, etc.) variables by splitting their samples according to these cat-
egories and estimating the same model separately in each subsample.2 In
behavioral research, for example, scholars may analyze interactive hy-
potheses that individual characteristics structure the impact of other
variables by estimating the same model in subsamples separated by race,

1. See Franzese (2005) for further, formal discussion of the first and third issues.
2. Indeed, sometimes even ordinal or cardinal variables are separated into high(er) and

low(er) categories for sample splitting in this manner. In addition to the considerations to
be discussed in this section, this will typically entail inefficiency as the gradations of ordi -
nal or cardinal information are discarded in the conversion to nominal categorization, al-
though the practice may be justifiable in some cases on other grounds.
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gender, and so on. A researcher might, for instance, estimate the effect of
socioeconomic status on political participation separately in samples of
male and female respondents to explore whether socioeconomic status
affects the propensity to vote differently by gender. In comparative or in-
ternational politics too, researchers might estimate the same model sep-
arately by country or region to explore whether national or regional con-
texts condition the effects of key variables. A political economist might,
for instance, estimate a model of electoral cycles in monetary policy sep-
arately in subsamples of fixed- and flexible-exchange-rate country times.
Similar subsample estimation strategies populate all subfields of political
science and other social sciences.

Such subsample estimation (1) produces valid estimates of the (con-
ditional) effects of the other variables at these different values of the
“moderating” variable, (2) commendably recognizes the conditionality
of the underlying arguments, and (3) can (perhaps with some effort) re-
produce any of the efficiency and other desirable statistical properties of
the alternative strategy of pooling with (nominal) interactions. However,
these subsample procedures also isolate, at least presentationally, one
variable as the moderator in what is logically a symmetric process—if x
moderates the effect of z on y, then z moderates the effect of x on y and
vice versa—thereby obscuring the converse. More fundamentally, these
procedures do not facilitate statistical comparison of the effects of “mod-
erated” or “moderating” variables; that is, one cannot as easily deter-
mine whether any differences in estimated effects across subsamples are
statistically significant or as easily determine the (conditional) effects of
the variable being treated as the moderating variable as one can in the
pooling strategy.

An alternative approach is to estimate a model that keeps the sub -
samples together and that includes interaction terms of all of the other
covariates, including the constant, with the variable being treated as the
moderator; this is sometimes called a “fully dummy-interactive” model.
The two approaches (separate sample versus fully dummy interactive
pooled sample) extract almost identical sets of information from the
data, but pooled-sample estimation extracts slightly more, potentially
more efficiently, and more easily allows statistical testing of the full set
of typical interactive hypotheses. That is, any desirable statistical prop-
erties that one can achieve by one strategy can, perhaps with consider-
able effort, be achieved by the other (see, e.g., Jusko and Shively 2005).
However, we believe that the pooled interactive strategy lends itself more
easily to obtaining these desirable qualities and, in some cases, also to
presenting and interpreting results. Hence, we suggest that separate-



Extensions 105

sample estimation be reserved for exploratory and sensitivity and robust-
ness consideration stages of analysis. We recommend pooled-sample ap-
proaches for final analysis and presentation. In either case, however, we
note that theory should dictate the use of fully interactive (or separate-
subsample) versus selectively interactive models. We do not advocate that
fully interactive models or separate-sample models be used as a substitute
for theoretically informed specifications. However, if a researcher is intent
on “splitting the samples,” then estimation using a fully interactive
pooled model is a better alternative to separate-sample estimation.

As an example, a researcher, wishing to explore gender differences, g,
in the effect of socioeconomic status and other independent variables, X,
on propensity to vote, y, separates the sample into males and females and
estimates

Sample g � Male: ym � X�m � um (37)

Sample g � Female: yf � X�f � uf (38)

Let M (F) be the number of observations in the male (female) sample.
Let k index the columns of X (e.g., xgk represents the kth independent
variable for the gender g sample; �gk is the coefficient on that kth inde-
pendent variable for that gender g sample) and let K be the number of
independent variables (excluding the constant). To obtain distinct coeffi-
cient estimates by gender, the researcher has several options.

Most easily, the researcher could estimate models (37) and (38) sepa-
rately, once per subsample. Or, he or she could pool the data into one
sample and reconfigure the X matrix by manually creating separate Xm

and Xf variables for each column of X, where Xm replaces each female
respondent’s X value with zero and Xf does so for male respondents. This
allows distinct coefficients on Xm and Xf and, if the constant (intercept) is
also separated into Xm and Xf in this way, will produce exactly the same
coefficient estimates as separate-sample estimation does. Identically to
this manual procedure, the researcher could simply create an indicator
variable for gm � Male and another indicator for gf � Female and include
these two indicators in place of the intercept and the interaction of each
of these indicators with all of the other independent variables in place of
those independent variables. Each gmX and gfX here will equal the Xm

and Xf from the manual procedure just described, and so this also pro-
duces exactly the same coefficient estimates as the separate-sample esti-
mation. Finally, the researcher could simply create one gender indicator,
say, the female gf, and include in the pooled-sample estimation all of the
X independent variables (including the constant), unmodified, plus that gf



indicator times each of these X variables (including the constant, which
product just reproduces gf). This, too, would produce the same sub-
stantive estimates for the model as separate-sample estimation, but the
coefficients would now refer to different aspects of that substance. The
coefficient on each variable xk (including the intercept) in this last op-
tion would refer to the effect on y of that variable among males,
whereas those coefficients on each xk plus the coefficient on the corre-
sponding interaction term, gf xk, would refer to the effect on y of that
xk among females. And the coefficient on gf xk would refer to the dif-
ference in the effect of that xk among females and the effect of that xk

among males. If all of these approaches produce the same substantive
results from their estimates, why might researchers prefer one or the
other of them?

In our review, researchers rarely offer reasons for presenting separate
subsample estimations of interactive effects. Perhaps some do not realize
that pooled-sample alternatives using interaction terms exist and, as we
show next, are at least equivalent on all grounds except, perhaps, con-
venience. Others may note more explicitly that, lacking a priori hy -
potheses about what differences in the effects of the various xk to expect
across their subsamples, they wish simply to explore inductively what
some possible candidates for interactive effects might be, and they find
separate-sample estimation a convenient and easily interpreted means of
conducting such exploration. The more technically savvy might even
suggest that they did not wish to impose or estimate any distributional
features of the residual term across subsamples, which would be neces-
sary to validate statistical comparison of subsample coefficient estimates
in pooled estimation.

In the separate-sample approach, researchers estimate one equation
for males:

1 Xm11 ��� XmK1 �m0y1m �1m�m1� � �   � (39)
� � ��yMm

� �
�Mm

��
1 Xm1M ���    XmKM

� �
�mK

�    
and the exactly analogous equation for females. Table 26 provides OLS
regression results from conducting this split-sample analysis (using our
very simple Support for Social Welfare example). Typically, researchers
will estimate these equations separately in each subsample and “eyeball”
the results for differences in estimated �, which, assuming no other inter-
actions, reflect directly the effect of the associated x in that subsample.
This provides the often-cited ease of interpretation in separate-sample es-
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TABLE 26. OLS Regression Results, Support for Social Welfare, Pooled and
Split Samples

Pooled Sample Males Only Females Only
Coefficient Coefficient Coefficient

(standard error) (standard error) (standard error)
p-Value p-Value p-Value

Female �0.0031 — —
(0.0144)
0.828

Republican �0.2205 �0.2205 �0.1368
(0.0155) (0.0154) (0.0148)
0.000 0.000 0.000

Female � Republican 0.0837 — —
(0.0214)
0.000

Intercept 0.7451 0.7451 0.7420
(0.0110) (0.0109) (0.0094)
0.000 0.000 0.000

N (df ) 1,077 (1,073) 498 (496) 579 (577)
Adjusted R2 0.223 0.290 0.128
P � F 0.000 0.000 0.000

Note: Cell entries are the estimated coefficient, with standard error in parentheses, and two-sided p-
level (probability �T � � t) referring to the null hypothesis that � � 0 in italics.

timation. However, the second or third of the pooled-sample options de-
scribed earlier (i.e., creating distinct Xf and Xm variables manually or by
dummy-variable interaction) exactly replicates these separate-subsample
coefficient estimates. If researchers prefer this sort of interpretability,
pooled-sample estimation can also produce it. Presentationally, too, one
can just as easily display two columns of coefficient estimates from one
pooled-sample equation as from two separate-sample estimations. There-
fore, direct interpretability of effects by subsample cannot adjudicate be-
tween pooled-sample and separate-sample approaches since one can pre -
sent the same results in the same fashion regardless of whether those
results derived from pooled-sample or separate-sample estimation.

Underlying any separate-sample estimation in the first place is at least
the hunch that the effects of some independent variables differ across the
categories distinguished by the subsamples. Thus, certainly, anyone con-
ducting such analysis will wish to compare coefficient estimates across
such subsamples. In table 26, a researcher might eyeball the differences
in the estimated coefficient for Republican in the sample for males, �̂R �

�0.2205, and in the sample for females, �̂R � �0.1368, and conclude
(often by some unspoken or, worse, arbitrary standard) that these coef-
ficients look “different enough.” If classical OLS assumptions apply in



each subsample (the OLS �̂ are the best linear unbiased estimates
[BLUE]), then the researcher could test the statistical significance of any
differences in parameters estimated separately across subsamples by dif-
ference tests of each �̂f and corresponding �̂m:3

H0: �f � �m or  �f � �m � 0

Conducting the standard t-test of this null hypothesis:

(�̂f � �̂m) � 0 (�̂f � �̂m) (�̂f � �̂m) 
� � (40)

s.e. (�̂f � �̂m) �V(�̂f ) �V(�̂m) � 2C(�̂f ,�̂m) �V(�̂f ) �V(�̂m)

The equality of the last expression to the previous two follows in this
case, as it would not generally, because �̂f and �̂m will not covary due to
the orthogonality of the gender indicators. Using our example, we would
thus calculate ((�̂f � �̂m) � 0)/s.e.(�̂f � �̂m) � (�0.1368 � (�0.2205))/

(0.0148)2 � (0.0154)2 � 0.0837/0.0214 	 3.92. The resulting t-test on
this value suggests p � 0.0001: these estimated coefficients do appear to
be statistically distinguishable from each other.

Few researchers in our review of the literature actually conducted this
test; at best, they offered some reference to the individual standard errors
of the two coefficient estimates in question. The subsample coefficient es-
timates will be independent by construction (the orthogonality of the in-
dicator variables assures this), but the simple sum of the standard errors
of the two coefficients is not the correct standard error for the estimated
difference. The standard error of the estimated difference between the
two coefficients is the square root of the sum of the estimated variances
of the two coefficients. To conduct this comparison across subsamples of
estimated effects, the reader should square the reported standard-error
estimates, sum those variances, and square-root that sum.

Pooled-sample estimation allows a more directly interpretable formu-
lation if the goal is to test whether effects differ across subsamples.
Namely, with the right-hand side of the model specified as X and the
nominal indicator(s) times X, the coefficient(s) on the interaction terms
directly reveal the difference in effects across subsamples and the standard
t-tests of those interaction-term coefficients directly reveal the statistical
significance of those differences in effects.4 A researcher seeking to deter-

¨ ¨ ¨ ¨ ¨
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3. Researchers may also conduct the joint-hypothesis test that all of the coefficients are

equal across subsamples, H0: �̂m � �̂f , with a standard F-test: (�̂m � �̂f)�[V(�̂m � �̂f)]�1

(�̂m � �̂f) � Fk,n�k.
4. Likewise, the standard F-test on the set of interaction terms tests whether the set of

effects of X jointly differ across subsamples; see note 3.

¨



1 Xm11 ��� XmK1 0 ��� 0 �m0

ym1 � �m1

� � � �

ymM 1 Xm1M XmKM 0 ��� 0 �mK

� � (41)
yf1 0 ��� 0 1 Xf11 ��� XfK1 �f0

� 0 � �f1

ymF �  � � �

(M�F)�1

0 ��� 0 1 Xf1F XfKF �fK

(M�F)�(2K�2) 2K�2

���

���

mine whether the effect of Republican differs across females and males
would need to calculate �̂R,females � �̂R,males � 0.0837 by subtracting the
respective estimated coefficients acquired through separate-sample esti-
mation. The pooled-sample estimation already provides this information,
in the estimated coefficient, �̂FR � 0.0837. Further, instead of calculating
the estimated standard error s.e.(�̂f � �̂m) based on the two separate
 samples, per equation (40), the researcher can determine whether the dif-
ference in the effect of Republican between females and males is statisti-
cally distinguishable from zero by simply conducting a t-test using the re-
sults from the pooled-sample estimation: divide the estimated coefficient
�̂FR by its estimated standard error: 0.0837/0.0214 	 3.92.

Thus, pooled-sample estimation offers two ways of presenting the
same substantive results. One way replicates the same interpretability of
coefficients as effects in subsamples afforded by separate-sample estima-
tion. Another affords direct interpretation of coefficients as the estimated
difference between effects across subsamples, as well as the standard 
t-tests or F-tests on those coefficients as revealing the statistical signifi-
cance of that estimated difference. Pooled-sample estimation streamlines
the process of testing the substantive hypotheses that researchers often
seek to examine.

Moreover, pooling not only produces identical effect estimates as
those obtained from separate samples, but it also (under classical linear
regression model [CLRM] assumptions) constrains the variance of resid-
uals, s2, to be equal for the two samples and not to covary across sub-
samples. Separate-sample estimation makes no such assumptions; thus,
pooled-sample estimation borrows strength from the other subsample(s)
to obtain better (i.e., more efficient) standard error estimates, although
only correctly so if these assumptions are true. Formally, these features
are seen most directly for the case where X is arranged in block diagonal,
either manually or by dummy-variable interactions:
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Recall that �̂ � s2 (X�X)�1. Since the X matrix here is block diago -
nal, the inverse will also be block diagonal, and the elements for males
of (X�X)�1 and X�y, which comprise the coefficient estimate for males,
�̂m � (Xm�Xm)�1 Xm�ym, are identical to what they would have been with
the samples separated. The statistical test for the equality of the male and
female coefficient estimates is then just the standard F-test on the equal-
ity of sets of two parameters (�f � �m). Note, though, that the single s2

estimated here naturally differs from the two, s2
m and s2

f , estimated sepa-
rately in the subsample estimates. Pooled OLS assumes that s2 is the
same across the two samples. That one s2 estimate, which is the average
squared residual, sums squared residuals across the entire sample and di-
vides by N � j with the N reflecting the entire sample (M � F) and j re-
flecting all of the coefficients in the pooled estimation, including the con-
stant. Separate-sample estimation produces a separate estimate of s2 for
each subsample (e.g., s2

m and s2
f). Each separate-sample estimation sums

only the squared residuals from its subsample and divides only by the
number of observations in its subsample, minus the number of coeffi-
cients in the subsample estimation, Ns � js. The subsample estimates are
inefficient. In other words, we obtain better estimates of s2 and, with
them, of estimated variance-covariances of the coefficient estimates in
pooled-sample than in separate-sample estimation—if, indeed, the resid-
ual variances are equal across subsamples.5 In this case, the inefficiency
manifests as one of the s2

m and s2
f being larger than it needs to be and the

other smaller than it should be. More generally, some of the s2
i will be

larger than they need to be and others smaller than they should be. To
explore whether such a common error-variance assumption is war-
ranted, we can test whether heteroskedasticity instead prevails. If the
data insist that heteroskedasticity exists, then one can model that vari-
ance (or variance-covariance) structure and employ weighted (or feasible
generalized) least squares in the pooled sample.

Other model restrictions, such as constraining some coefficients to be
equal across subsamples while allowing others to vary, are also easier to
implement in pooled-sample estimation and will also, if true, enhance co-
efficient and standard-error estimates’ efficiency. For example, we may
posit, or theory may establish, that some x affects males’ and females’
voting propensities equally (or equally and oppositely, or otherwise re-
latedly in some deterministic manner). In some contexts, accounting or
other mathematical identities may even require certain relations between

5. In this case, the efficiency gains imply that estimated standard errors will be more
accurate, not necessarily lower. As pooling borrows strength from the other subsamples to
improve standard-error estimates, generally one (some) estimated effect(s) will be lower
and (some) other(s) higher.



particular coefficients. Rather than estimate both of these effects sepa-
rately, as separate-sample estimation all but requires,6 one could in
pooled-sample estimation simply refrain from including those dummy-
variable interactions (or reverse the sign of those variables in the male or
female sample, or analogously impose the constraints directly for other
cases). As with a common-variance assumption, such cross-subsample
restrictions can be tested, rather than assumed and imposed without test-
ing, and again more conveniently in pooled-sample than in separate-sub-
sample estimation. If the data insist that coefficients differ, this is easily
allowed.

Thus, in short, compared to separate-sample estimation: (1) pooled-
sample estimation can yield identical or superior interpretability; (2) it
can encourage statistical comparison of effects over mere eyeballing; and
(3) it may improve efficiency (precision) of estimation more easily if any
efficiency-enhancing cross-subsample coefficient or error variance-covari-
ance constraints are warranted. Therefore, if theory dictates that the ef-
fects of all variables should be dependent upon some x, we generally rec-
ommend that researchers present pooled-sample estimates as their final
analysis—and report on the statistical certainty of any differences in ef-
fects they deem substantively important—even if they find conducting
preliminary exploratory analysis in separate subsamples more convenient.
We reiterate that while fully interactive pooled-sample estimation is pref -
erable to separate-sample estimation, neither substitutes for a theoreti-
cally motivated model that identifies persuasively why the effect of some
(set of) variable(s) should depend on x.7

Nonlinear Models

To this point, we have limited our discussion to interactive terms in lin-
ear models. However, we must also address interactions in nonlinear
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6. To our knowledge, only some relatively complicated iterative procedure, like
MCMC (Markov chain Monte Carlo), could succeed in imposing that some �̂m � �̂f across
separate-subsample estimations, for example, and correctly gauge the statistical uncer-
tainty of that single coefficient estimate.

7. In multicategory cases, one can include X, indicators for all the categories except
one, and all the interactions of the former with the latter, in which case the excluded cate-
gory becomes the suppressed reference group that serves as the baseline for comparison.
Standard t-tests would in this case refer to whether the effect in the category in question
differs significantly from that base case for that category’s indicator. Alternatively, one
could block-diagonalize X, and then the coefficients would refer directly to the estimated
effects of each x in each category, whereas tests of significance of any differences in esti-
mated effects would require additional steps. In either case, one can interpret these inter-
active effects by calculating differences in predicted probabilities or derivatives (treating the
derivatives of noncontinuous indicators as approximations).



models, which would include most models of qualitative dependent vari-
ables, given their prevalence in social science. For nonlinear models that
include explicit linear-interactive terms among their right-hand-side vari-
ables, much of the discussion in preceding sections and chapters contin-
ues to apply. However, a further complication arises regarding the effect
of x on y when right-hand-side variables are nonlinearly related to y by
construction in the model. In logit or probit models of binary outcomes,
for example, the effect of a variable x on y depends on the values of (all)
the other variables z automatically due to the imposed nonlinear struc-
ture of the model. Thus, nonlinear models express conditional (i.e., in-
teractive) relationships of the independent to dependent variables by
construction, although they may also contain additional explicitly mod-
eled linear interactions among the right-hand-side arguments of those
nonlinear functions. The issue, then, arises regarding the proper inter -
pretation of the effects of variables upon which a conditional relation-
ship has been imposed, or assumed by construction, by virtue of the par-
ticular model specification employed.

Logit and probit models of dichotomous outcomes, for example,
both (1) impose conditional relationships of x to y by construction and
(2) use a sigmoidal (i.e., S-shaped) functional form implying specific
character to those interactions. In these sigmoidal functional forms, the
effects of changes in one variable on y are larger when the predicted
probabilities are closer to the midpoint. Noting this, Nagler (1991), for
example, critiques the claim of Wolfinger and Rosenstone (1980) that
registration requirements discourage turnout to a greater extent among
low education groups. He argues that this larger effect derives from the
functional form assumed a priori and not necessarily from an explicit or
direct interaction between education and registration requirements, for
instance, that the less educated find surmounting registration require-
ments more difficult. The logit form by itself implies that education in-
teracts with registration requirements and vice versa only because of
and only through the other variable’s effect on the overall propensity to
vote. Insofar as being less educated puts one nearer a 0.5 probability of
voting and being more educated puts one further from that point, reg-
istration requirements will have greater effect on the less educated’s
propensity to vote for that reason alone. Nagler tests whether education
and registration requirements additionally interact explicitly to move a
respondent along the S curve by including a specific linear interaction
between education and registration requirement in the argument to a
logit function. He also estimates logit coefficients on strict versus lax
registration requirements separately in samples split by education (a
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strategy discussed earlier in this chapter). He finds little support for
Wolfinger and Rosenstone’s conclusion.8

The notion that multiple explicit interactions determine one’s depen-
dent variable suggests explicit modeling of those interactions, in as pre-
cise a fashion as theoretically possible. The defense for the specific form
of interactivity implicit in logit, probit, and related models is, in fact, ex-
plicit and theoretical in this way. First, the logit and probit functional
form implies a particular and very specific set of interactions to produce
S shapes. That such S shapes should describe the relations of independent
to dependent variables is substantively and theoretically derived from the
proposition that inducing probabilities to increase or to decrease be-
comes increasingly difficult, that is, requires larger movements in inde-
pendent variables, as probabilities near one or zero (see also note 8). If
the researcher wishes to infer beyond the specific forms of interactions
that produce these S shapes, we concur with Nagler (1991) that he or she
must model those further interactions explicitly.

We now discuss in more detail the interpretation of effects in two
commonly used nonlinear models: probit and logit. For example, sup-
pose some nonlinear function, F(�), often called a “link function,” is used
to relate a binary outcome, y, with x��, where y refers to a binary depen-
dent variable, x� refers to a row vector of k � 1 regressors, and � refers

8. Similarly, Frant (1991)  reviews the research of Berry and Berry (1990) on state lot-
tery policy adoptions. Frant argues that Berry and Berry draw their conclusions about the
interaction between motivation, obstacles to innovation, and resources to overcome obsta-
cles to innovation from the assumption inherent in the probit specification they employ.
Berry and Berry (1991), however, disagree. They believe that their theory suggests that they
estimate a probit model with no interactions or a linear probability model with a number
of multiplicative terms. However, they prefer the probit model because the complexly in-
teractive theory driving their model would require “so large a number of multiplicative
terms as to render the model useless for empirical analysis because of extreme colinearity”
(578). To argue that the complexly interactive nature of one’s theory debars explicit mod-
eling of it is a very weak defense by itself for applying an arbitrary specific functional form
(probit) to allow all the independent variables to interact according to that specific func-
tional form rather than explicitly to derive the form of these complex interactions from the
theory. As we suggest and Frant (1991) notes, a stronger argument in defense would have
been to demonstrate directly and explicitly that the theory implied specifically a set of in-
teractions like those entailed inherently in a probit model, which indeed seems possible in
this case. To generalize the example to a form common in many contexts, an argument
might involve some overcoming of resistance from a broad set of conditions (explanatory
factors) being necessary to produce an outcome. It might also then invoke some notion of
a tipping point set by some values of this set of conditions and possibly even consider the
outcome to become increasingly “overdetermined” as the factors all push for the out-
come. Such an argument, which seems similar to Berry and Berry’s, would indeed imply
an S-shaped relation, such as logit or probit, between the explanatory factors and the out-
come. Alternative sources or types of interactions, however, would not be inherent in sig-
moid functions lacking those further, explicit interactions.
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to a column vector of coefficients. In such a case, one could model the
probability that y takes the value one as p(y � 1) � p � F(x��).

In the probit case, p � �(x��), where � is the cumulative standard-
normal distribution. Cumulative normal distributions are S shaped, and
so ever larger increases or decreases in x�� are required to increase or de-
crease the probability y � 1 as this probability draws closer to one or
zero. In the logit case, p � �(x��), where �(�) is the logit function:
�(x��) � ex��/(1 � ex��) or, equivalently, �(x��) � [1 � e�x��]�1. (Several
other useful formulations of the logit function also exist.)

We begin with a simple probability model that omits explicit interac-
tion terms:

p � F(x��) � F(�0 � �xx � �zz � ��� � �kw)

As always, the marginal effects of a variable x on p can be calculated
by taking the first derivative of this function.9 Note here the use of the
chain rule in differentiating the function:

�p/�x � [�p/�F(x��)][�F(x��)/�x]

�p/�x � [�p/�F(x��)][�F(x��)/�x]

In the probit case, using the same model that omits explicit interac-
tion terms, this is simply

p � �(x��) � �(�0 � �xx � �zz � � � � � �kw)
x��

1
� � e�(½)t2 dt where t � �0 � �xx � �zz � ��� � �kw

�� 
2�

1
�p/�x � [��(x��)/�x] � �(x��)�x � e�(½)(x��)2 � �x


2�

where �(x��) is the standard-normal probability density function evalu-
ated at x��.10 Thus, as is central to the theoretical proposition of an S-
shaped relationship, the magnitude of effects of x on the probability that
y � 1 is largest at p � 0.5 (at x�� � 0) and becomes smaller, approach -
ing zero, as that probability goes to one or zero (as x�� approaches in-

9. Note the distinction here between conceptualizing effects of a one-unit change in
x literally computed (i.e., p̂c � p̂a) versus marginal effects, that is, effects of an infinitesimal
change in x, �y/�x. Generally, the former is recommended for discrete variables and the lat-
ter for continuous variables. (See Greene 2003 for elaboration.)

10. The derivative of any cumulative probability distribution function (cdf), F, is the
corresponding probability density function (pdf), f, and so the derivative of �, the cdf of
the standard normal, is �, the pdf of the standard normal.



finity or negative infinity). One sees also that the effect of each x depends
on itself and all of the other variables, since all the covariates and their
coefficients appear in the �(x��) that multiplies the coefficient on x to de-
termine the effect of x.

In the logit case, again for this model omitting explicit interaction
terms, this is simply

p � �(x��) � �1 � e�x����1
� �1 � e�(�0��xx��zz������kw)��1

�p/�x � �(x��)(1 � �(x��))(�x) (42)

In the specific model of equation (42), this would be

�p e�0��xx��zz������kw

� � � �x
�x �1 � e�0��xx��zz������kw�2

� �(�0 � �xx � �zz � ��� � �kw)

� [1 � �(�0 � �xx � �zz � ��� � �kw)]�x

Obviously, as with probit, the effect of x depends on the values of x,
z, . . . , w as well as the estimated coefficients for �0, . . . , �k. We can also
see, again as with probit, that the largest magnitude effects of x occur at
p � 0.5, which occurs at x
� � 0, and that these effects become progres-
sively smaller in magnitude as p approaches one or zero, which occurs as
x�� approaches positive or negative infinity, producing that familiar S
shape again (although a slightly different S shape than probit produces).

When an explicit linear-interaction term (e.g., between x and z) is in-
cluded in the x�� part of the model, the effects of x continue to depend on
the values of the other variables via the nonlinear form, specifically the S
shape, of the model as before. In addition, movements along this S shape
induced by movements in x depend directly on the value of z as well:

x��
1                                     �0 � �xx � �zzp � �(x��) � � e�(½)t2 dt where t � � (43)

�� 
2�                                   � �xzxz � ��� � �kw

e�0��xx��zz��xzxz������kw

p � �(x��) � (44)
1 � e�0��xx��zz��xzxz������kw

For illustration, we discuss a simple empirical example predicting
turnout, using data from the 2004 National Election Studies. The de -
pendent variable, Voted, is binary: 1 if the respondent voted; 0 if not. We
model turnout as a function of two individual-level characteristics: edu-
cation, ranging from one to seventeen years of Schooling, and strength
of partisanship, StrPID, an ordinal measure equaling 0 for independents
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and 1 for leaning, 2 for weak, and 3 for strong partisans.11 We interact
education and strength of partisanship to explore whether education ex-
plicitly conditions the effect of strength of partisanship and vice versa. A
researcher might argue that education and strength of partisanship each
bring resources and motivation that reinforce each other in reducing the
costs or increasing the benefits of voting, such that increases in one vari-
able will boost the impact of the other in generating the net benefit to the
individual of voting that relates nonlinearly (specifically: sigmoidally) to
that individual’s propensity to vote. Alternatively, the researcher might
suspect the opposite: that educational and partisan resources and moti -
vations undermine each other, such that increases in one variable con-
tribute less to the net benefit of voting when the other is high than when
it is low. Notice how these propositions argue something further than that
the effect of one variable is higher or lower when the other is lower or
higher because both augment (detriment) the propensity to vote and so
each has less effect when the other already leans the individual far toward
or away from voting. This last possibility is what the S-shaped function
relating education and partisanship to vote propensity already assumes.
Formally, we specify the following model (a fully specified model of
turnout would, of course, include several additional covariates):

Voted � F(�0 � �SchSchooling � �StrStrPID � �Sch�StrSchooling 

� StrPID � �)

The logit and probit estimates appear in table 27.
The effects of x can be calculated using the derivative method or the

method of differences in predicted probabilities. For the first-derivative
approach, interpretation of a model with an explicit interaction in addi-
tion to its implicit ones would again require application of the chain rule.
For logit:

�p �p �x�� �x�� 
�                  � �(1 � e�x��)�2 e�x��(�1)

�x �x�� �x �x

ex�� 1
� � �� �(�x � �xzz)

1 � ex�� 1 � ex��

�x��
� [�(x��)][1 � �(x��)]        � p(1 � p)(�x � �xzz) (45)

�x

11. Here, as is common in such cases, we are treating the ordinal information on par-
tisan leanings recorded by this measure as interval (or effectively interval, plus only some
unimportant and unproblematic noise) by giving it simple linear coefficients in x��. 



This is the same expression as before except that now the effect of x
depends not only on the other x through [�(x��)][1 � �(x��)] but also
and again on the value of z in the manner implied by the linear interac-
tion of x and z contained in x. Thus, z modifies the effect of x on p not
only by its role in the calculation of �(x��), where it enters in the ��zz
� �xzxz terms, but also in the final term, �x��/�x, where it enters in the
expression �x��/�x � �x � �xzz. The former role is that imposed by the
assumed sigmoidal relationship from independent to dependent vari-
ables; the latter role is imposed by the explicit interaction term as z con-
ditions the effect of x on movement along that S shape.

Similarly, for the probit model, when there is an explicit interaction
between x and z:

�p �p �x�� �x�� 
�                  � �(x��) � �(x��)(�x� �xzz)

�x �x�� �x �x

1
� e�(½)(x��)2 � (�x� �xzz)                                           (46)


2�

In our example, the marginal effects of Schooling would be calcu-
lated at specific values of Schooling along varying values of StrPID,
given as �p̂/�x � p̂(1 � p̂)(�̂x � �̂xzz) in the logit case and �p̂/�x �
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TABLE 27. Logit and Probit Regression Results, Turnout

Logit Estimates Probit Estimates
Coefficient Coefficient

(standard error) (standard error)
p-Value p-Value

Years of Schooling 0.310 0.190
(0.065) (0.037)
0.000 0.000

Strength of Partisanship 0.904 0.607
(0.445) (0.251)
0.042 0.015

Years of Schooling � Strength of Partisanship �0.021 �0.019
(0.034) (0.019)
0.536 0.321

Intercept �3.842 �2.340
(0.852) (0.489)
0.000 0.000

N(df ) 1,065 (1,062) 1,065 (1,062)
lnL �476.26 �476.04
P � �2 0.000 0.000

Note: Cell entries are the estimated coefficient, with standard error in parentheses, and two-sided p-
level (probability �T � � t) referring to the null hypothesis that � � 0 in italics.



�(x��̂)(�̂x � �̂xzz) in the probit case. Table 28 and table 29 provide the
marginal effects of Schooling and StrPID, respectively, holding Schooling
and StrPID at substantively interesting values. A sample calculation of
the marginal effect of Schooling, when Schooling � 12 and StrPID � 3,
using the logit results, is

�p̂ e�3.84�0.31�12�0.904�3�0.021�12�3 e�3.84�0.31�12�0.904�3�0.021�12�3

� � ��1 � ��Sch 1�e�3.84�0.31�12�0.904�3�0.021�12�3 1�e�3.84�0.31�12�0.904�3�0.021�12�3

� (0.31 � �0.021 � 3)

� (0.861)(1 � 0.861)(0.31 � �0.021 � 3) 	 0.029

Alternatively, one could calculate the predicted probabilities, p̂, with
appropriate confidence intervals. The intuition behind calculating the
predicted probabilities in a nonlinear model is exactly the same as that
behind calculating predicted values of y in a linear model. The nonlinear
model merely requires an additional step, in projecting the linear index
(i.e., the sum of the coefficients times their covariates) through the non-
linear model onto probability space (in the cases of logit and probit). For
example, suppose we estimated the following relationship:

p � F(�0 � �xx � �zz � �xzxz)

Denote the predicted probabilities F̂ � F(x��̂), with the linear index, x��̂,
computed in identical fashion to the linear-regression case:

x��̂ � �̂0 � �̂xx � �̂zz � �̂xzxz

118 Modeling and Interpreting Interactive Hypotheses in Regression Analysis

TABLE 28. Marginal Effects of Schooling, Using Logit Results

Independents Leaning Partisans Weak Partisans Strong Partisans

Years of Schooling � 9 0.059 (0.007) 0.070 (0.008) 0.065 (0.010) 0.046 (0.016)
Years of Schooling � 12 0.077 (0.016) 0.067 (0.010) 0.048 (0.008) 0.029 (0.008)
Years of Schooling � 15 0.066 (0.011) 0.046 (0.005) 0.029 (0.003) 0.016 (0.003)

Note: Cell entries are the estimated marginal effect, with standard error in parentheses.

TABLE 29. Marginal Effects of Strength of Partisanship, Using Logit Results

Independents Leaning Partisans Weak Partisans Strong Partisans

Years of Schooling � 9 0.137 (0.017) 0.173 (0.035) 0.172 (0.035) 0.134 (0.018)
Years of Schooling � 12 0.162 (0.020) 0.152 (0.022) 0.117 (0.014) 0.078 (0.006)
Years of Schooling � 15 0.125 (0.032) 0.093 (0.022) 0.063 (0.011) 0.039 (0.004)

Note: Cell entries are the estimated marginal effect, with standard error in parentheses.



After calculation of the linear index, the researcher must use the link
function, F(x��̂) (here, the logit �(x��̂) or probit �(x��̂)), to convert the
linear index into probability space. In either case, the predicted proba -
bilities would be calculated at various values of x (say, between xa and
xc), holding z at some substantively meaningful and logically relevant
value (e.g., its sample mean, z̄) and of course allowing xz to vary from
xaz̄ to xcz̄.

Thus, to calculate the effect on the predicted probability of a discrete
change in x, say, from xa and xc , one would simply first compute the lin-
ear index at xa and xc :

(x��̂)a � �̂0 � �̂xxa � �̂zz̄ � �̂xzxaz̄;  

(x��̂)c � �̂0 � �̂xxc � �̂zz̄ � �̂xzxcz̄

Then one would project each linear index into probability space; for the
logit case:

e(x��̂)a e(x��̂)c
p̂a �                 ;    p̂c �

1 � e(x��̂)a 1 � e(x��̂)c

And then one simply computes the difference between the two probabil-
ities: p̂c � p̂a. For probit, the process is identical except that one uses
�(x��̂)a instead of [1 � e�(x��̂)a]�1, that is, the cumulative standard nor-
mal rather than the logit, as the link function.

We reiterate our strong recommendation that researchers compute
and report measures of uncertainty around marginal effects and pre-
dicted probabilities. Standard errors for marginal effects can be com-
puted by the delta method, as described in most statistics texts, for ex-
ample, Greene (2003, 70).12 The variance of any nonlinear function of
parameter estimates, such as an estimated marginal effect like �p̂/�x, is
approximated asymptotically as a linear function of the estimated vari-
ance-covariance matrix of the parameter estimates, here V(�̂), and the
derivative of the function with respect to �̂:13

¨
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12. For confidence intervals around predicted levels, p̂, a simpler expedient of calcu-
lating confidence intervals for the linear x��̂ and then translating those bounds to proba-
bility space using the link function will also suffice and, indeed, would have the advantage
of constraining the confidence interval bounds to lie between zero and one, which the delta
method’s linearization strategy would not. That expedient would seem unavailable for con-
fidence intervals around marginal effects and differences, however.

13. The derivative of a function with respect to a vector of its arguments is called a
gradient and denoted ��̂ , but we eschew this terminology and notation as probably less fa-
miliar to many readers.
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�p̂ �p̂
�� � �� ��p̂ �x  �x

V� � 	 � �[V(�̂)]� �� (47)
�x ��̂� ��̂�

We now apply this to the logit case, where p̂ � (1 � e�x��̂)�1, �p̂/�x � p̂(1
� p̂) �x��̂/�x.14

Next, using the product rule15 to solve [�(�p̂/�x)/��̂�]: 

�(�p̂/�x)/��̂� � [�(�x��̂/�x)/��̂�](p̂(1 � p̂)) � [�p̂/��̂�]

� ((1 � p̂)(�x��̂/�x)) � [�(1 � p̂)/��̂�](p̂(�x��̂/�x))

Reexpressing terms, given that �x��̂/�x � �̂x � �̂xzz: �(�x��̂/�x)/��̂� �

�(�̂x � �̂xzz)/��̂�. Let �̂x � �̂xzz � r��̂, where r� � [1 0 z 0], assuming
the estimated coefficients are arranged as �̂� � [�̂x �̂z �̂xz �̂0], in that
order. Differentiating: �(�x��̂/�x)/��̂� � �r��̂/��̂� � r�.

For the next term, �p̂/��̂�:

e�x��̂

�p̂/��̂� � (�p̂/�(x��̂))(�(x��̂)/��̂�) �                    x� � p̂(1 � p̂)x�
(1 � e�x��̂)2

And for the next term, �(1 � p̂)/��̂�:

�(1 � p̂)     �(1 � p̂) �(x��̂) ��1 � (1 � e�x��̂)�1� �(x��̂)
�                          �  

��̂� �(x��̂)    ��̂� �(x��̂)              ��̂�

�e�x��̂

�                  x����p̂(1� p̂)x��
(1 � e�x��̂)2

Substituting:

�(�p̂/�x)/��̂� � r�(p̂(1 � p̂)) � [p̂(1 � p̂)x�]((1 � p̂)(�x��/�x)) 

� [�(p̂(1 � p̂)x�)](p̂(�x��/�x))

Substituting �x��̂/�x � �̂x � �̂xzz: 

�(�p̂/�x)/��̂� � (p̂(1 � p̂))(r� � (1 � 2p̂)(�̂x � �̂xzz)x�) 

Then substituting into equation (47):

V(�p̂/�x) 	 (p̂(1 � p̂))((r� � (1 � 2p̂)(�̂x � �̂xzz)x�))V(�̂)(p̂(1 � p̂))

� ((r� � (1 � 2p̂)(�̂x � �̂xzz)x�))�

� (p̂(1 � p̂))2(r� � (1 � 2p̂)(�̂x � �̂xzz)x�)V(�̂)

� (r � (1 � 2p̂)(�̂x � �̂xzz)x)

¨

¨ ¨

¨ ¨

14. In the simple case that contains no explicit interaction, �p̂/�x � p̂(1 � p̂) (�x��̂/�x)
� p̂(1 � p̂)�̂x. When x interacts with another variable, z, as in equation (44), then �p̂/�x �

p̂(1 � p̂)(�̂x � �̂xzz).
15. Recall that �(f(x)g(x))/�x � �f(x)/�x g(x) � �g(x)/�x f(x).



�     �

Note that (1 � 2p̂)(�̂x � �̂xzz) is a scalar for a given set of values of x, z,
and xz that scales the values in vector x�. Let sL be the value of the scal-
ing value in the logit: sL � (1 � 2p̂)(�̂x � �̂xzz):

V(�p̂/�x) 	 (p̂(1 � p̂))2(r� � sLx�)V(�̂)(r � sLx)

� (p̂(1 � p̂))2�r�V(�̂)r � 2sLx�V(�̂)r � sL
2x�V(�̂)x�

Using our empirical example, we can calculate the estimated variance
around the estimated marginal effect of Schooling, when Schooling � 12
and StrPID � 3. In this example, x� � [12 3 36 1]; the value at which
Schooling is held is located in the first column; the value at which StrPID
is held is in the second column; the interaction term’s value appears in the
third column; and a 1 is located in the last column, to represent the inter-
cept. We established previously that (p̂ � Sch � 12, Str � 3) � 0.861. Be-
cause we are taking �p̂/�x with respect to Schooling, and because the
value of StrPID is 3, r� � [1 0 3 0]. As with linear regression, the esti-
mated variance-covariance matrix of the estimated logit or probit coeffi-
cients can be easily called by a postestimation command. In this case,

0.004    0.024  �0.002  �0.055
0.024    0.198  �0.015  �0.323

V(�̂) � � � ,
�0.002  �0.015  0.001  0.024
�0.055  �0.323  0.024  0.726

a 4 � 4 matrix that lists the estimated coefficient variances and covari-
ances in the order in which they appear in the regression results and cor-
responding with the order in which values are arrayed in x�. Substituting
the set values in x�, the values in r�, and the estimated values for p̂ and
V(�̂):

V(�p̂/�x) 	 (0.861(1 � 0.861))2

0.004  0.024  �0.002  �0.055   1
0.024  0.198  �0.015  �0.323   0

[1  0  3  0]�                                � � ��0.002  �0.015  0.001  0.024   3
�0.055  �0.323  0.024  0.726   0

0.004  0.024  �0.002  �0.055   1
0.024  0.198  �0.015  �0.323   0

�  �2sL[12  3  36  1] �                                � � ��0.002  �0.015  0.001  0.024   3
�0.055  �0.323  0.024  0.726   0

0.004  0.024  �0.002  �0.055   12
0.024  0.198  �0.015  �0.323    3

�sL
2[12  3  36  1] �                                � � ��0.002  �0.015  0.001  0.024   36

�0.055  �0.323  0.024  0.726    1

¨

¨¨ ¨

¨ ¨

¨
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where sL � (1 � 2 � 0.861)(0.31 � 0.021 � 3). A standard sta-
tistical package or a spreadsheet program can easily perform these
 calculations.

Similarly for the probit case, standard errors around marginal effects
are calculated following equation (47); specifying p̂ � �(x��̂), we have
�p̂/�x � �(x��̂)�x��̂/�x. Using the product rule, �(�p̂/�x)/��̂� �

[�(�x��̂/�x)/��̂�]�(x��̂) � (�x��̂/�x)[��(x��̂)/��̂�]. Reexpressing the first
term in brackets: �(�x��̂/�x)/��̂� � r�. The second term in brackets is
��(x��̂)/��̂� � (��(x��̂)/�(x��̂))(�(x��̂)/��̂�) � (1/
�2� e�(½)(x��̂ )2)
(�x��̂)(�(x��̂)/��̂�) � �(�(x��̂))(x��̂)x�. Substituting into �(�p̂/�x)/��̂�:
�(�p̂/�x)/��̂� � [r�]�(x��̂) � (�x��̂/�x)(�(x��̂))(x��̂)x� � �(x��̂)(r� � (�̂x

� �̂xzz)(x��̂)x�). Then substituting into equation (47):

V(�p̂/�x) 	 [(�(x��̂))(r� � x��̂(�̂x � �̂xzz)x�)]V(�̂)[(�(x��̂))

� (r� � x��̂(�̂x � �̂xzz)x�)]�

� (�(x��̂))2 (r� � x��̂(�̂x � �̂xzz)x�)V(�̂)[(r � �̂�x(�̂x � �̂xzz)x)]

Again, note that x��̂(�̂x � �̂xzz) is a scalar for a given set of values of x,
z, and xz. Let sP � x��̂(�̂x � �̂xzz). Substituting:

V(�p̂/�x) 	 (�(x��̂))2 (r� � sPx�)V(�̂)(r � sPx)

� (�(x��̂))2 (r�V(�̂)r � 2sPx�V(�̂)r � sP
2x�V(�̂)x)

For standard errors around predicted probabilities, we can also use the
delta method. In the logit case, V(p̂) 	 [�p̂/��̂]� [V(�̂)][�p̂/��̂] � [p̂(1 �

p̂)x�][V(�̂)][p̂(1 � p̂)x] � (p̂(1 � p̂))2 x�[V(�̂)]x. That is, square p̂(1 � p̂)
and multiply the result by the estimated variance-covariance matrix of the
estimated coefficients, pre- and postmultiplied by the x vector specified at

the values of interest. In the probit case, V(p̂) 	 [�(�(x��̂))x]�[V(�̂)]

[� (�(x��̂))x] � (�(x��̂))2 x�[V(�̂)]x. As with linear-regression models,
predicted probabilities are most effective presentationally when graphed
with confidence intervals. Confidence intervals can be generated using the

same formulas: p̂ � tdf,p 
�V(p̂) .
Calculation of the standard error for the difference between two pre-

dicted probabilities, say, those reflecting the effect of a specific change in
x from xa to xc , follows the same delta method:

¨

¨
¨

¨ ¨

¨ ¨
¨

¨ ¨

¨ ¨

¨ ¨ ¨

¨
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�(F̂c � F̂a)         �(F̂c � F̂a)       �F̂c �F̂aV(F̂c � F̂a) 	 � ��[V(�̂)]� � � � � ��[V(�̂)]
��̂ ��̂ ��̂ ��̂

�F̂c �F̂a� � � ���̂ ��̂

� [ f̂cx�c � f̂ ax�a][V(�̂)][ f̂cxc � f̂axa]

Here F̂a and F̂c are the link function (logit or probit here), and f̂ a and f̂ c

are their derivatives with respect to x��̂, (p̂(1 � p̂) for logit and �(x��̂)
for probit). These link functions and derivatives are evaluated at xa and
xc , respectively.

Many existing statistical software packages will calculate these stan-
dard errors of estimated probabilities for the researcher, and some will
even calculate standard errors for derivatives or differences at user-given
levels of the variables. Our intention here is to reemphasize the impor-
tance of examining effects rather than simply coefficients (or predicted
levels), be they estimated in a linear or nonlinear specification, and to
provide readers with a sense of the mathematics underlying the calcula-
tion of these estimated effects and their corresponding standard errors.

Random-Effects Models and Hierarchical Models

When modeling relationships between a set of covariates, X, and a de-
pendent variable, y, scholars make assumptions about the deterministic
(i.e., fixed) versus stochastic (i.e., random) nature of those relationships.
In the interaction context, for example, scholars might propose that the
effects of x and of z on y depend either deterministically or stochastically
on the other variable. The burgeoning “random-effects” literature pro-
poses the latter, probabilistic, relationship. (The related multilevel-model
or hierarchical-model literature addresses a similar issue, although pos-
sibly with different assumptions about the properties of the stochastic as-
pects of the relationships: see the discussion that follows.)16

Let us start thus:

y � �0 � �1x � �2z � � (48)

As before, the linear-interactive specification of the posited interactive
relationships could be

�0 � �0 � �1x � �2z,    �1 � 	1 � 	2z,    and  �2 � 	3 � 	4x (49)

¨ ¨ ¨

¨

16. For more thorough discussion of the issues in this section, see Franzese (2005).



in the deterministic case, suggesting our standard linear-interactive re-
gression model:

y � �0 � �xx � �zz � �xzxz � � (50)

where �x � �1 � 	1 , �z � �2 � 	3 , �xz � 	2 � 	4 . Notice, however, that
this standard model in fact assumes that the effect of x on y varies with
z, and the effect of z on y varies with x, without error. Likewise, the in-
tercept does not vary across repeated samples. A linear-interactive model
with random effects would instead be

�0 � �0 � �1x � �2z� �0,    �1 � 	1 � 	2z � �1,    and  

�2 � 	3 � 	4x � �2 (51)

suggesting the following similar-looking linear-interactive regression
model:

y � �0 � �xx � �zz � �xzxz � �* (52)

but with �* � � � �0 � �1x � �2z.
Thus, the distinction between the deterministically interactive and the

stochastically interactive models occurs only in the “error” term; the two
models are identical except for the difference between � and �*. In the
first case, where the conditioning effects are assumed to be deterministic,
OLS would be BLUE, that is, yielding the best (most efficient), linear un-
biased estimates (provided the model is also correctly specified in other
regards, of course). In the latter case, where effects are assumed stochas-
tic, or probabilistic, one suspects that OLS estimates might not be BLUE.
Notice, however, that, assuming all the stochastic terms have mean zero,
E(�, �0, �1, �2) � 0, and do not covary with the regressors, C({�, �0, �1,
�2}, x) � 0, as commonly done in most regression contexts including ran-
dom effects/hierarchical modeling, OLS estimation would still yield un-
biased and consistent coefficient estimates.17 On the other hand, the
composite residual’s variance, V(�*), is not constant (homoskedastic) but
differs (heteroskedastic) across observations, even if V(�) . . . V(�2) are
each constant, rendering coefficient estimates and standard errors ineffi-
cient. Moreover, this nonconstant variance moves with the values of x
and z, which implies that the standard-error estimates (but not the coef-
ficient estimates) are biased and inconsistent as well. Thus, even if the
error components in the random-effects model have constant variance,
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17. E(�̂ols) � E((X�X)�1X�y) � E((X�X)�1X�(X� � �*)) � � � E((X�X)�1X��*) � �
� 0 � � if each component of �* has mean zero and does not covary with x. See Franzese
(2005) for a fuller discussion of the proof. 



mean zero, and no correlation with regressors, as we would commonly
assume, OLS coefficient estimates will be inefficient, and OLS standard-
error estimates will be biased, inconsistent, and inefficient. These prob-
lems, though potentially serious, are probably small in magnitude in
most cases and, anyway, easy to redress by simple techniques with which
political scientists are already familiar.

As mentioned before, similar issues arise in the literature on hierar-
chical, or multilevel, models (see, e.g., Bryk and Raudenbush 2001;
Kedar and Shively 2005; Steenbergen and Jones 2002). Often these mod-
els propose that some unit-level yij depends on a contextual-level vari-
able, zj , varying only across and not within the j contexts, and a unit-
level variable, xij , and furthermore that the effect of the unit-level
variable xij depends (deterministically or stochastically) on zj :

yij � �0 � �1xij � �2zj � �ij (53)

�0 � �0(��0ij)

�1 � 	1 � 	2zj (��1j)

�2 � 	3 � 	4xij (��2ij)

which implies that one may model y for regression analysis as

y � �0 � �xx � �zz � �xzxz � �* (54)

where �* � �ij (��0ij � �1jxij � �2ijzj) and the coefficients remain identi-
cal to those given previously.

Assuming deterministic conditional relationships so that �* � �ij, that
is, the parenthetical terms are all zero, and assuming that this simple
residual is well behaved (mean zero, constant variance, and no correla-
tion with regressors, as usual), OLS is BLUE. If, instead, �ij exhibits het-
eroskedasticity and/or correlation across i or j, then OLS coefficient and
standard-error estimates would be unbiased and consistent but inef -
ficient in the case that the patterns of these nonconstant variances and/or
correlations were themselves uncorrelated with the regressors, their
cross-products, and their squares. In the case that these patterns corre-
lated in some fashion with the regressors, their cross-products, or their
squares, OLS coefficient estimates would still be unbiased and consistent
but inefficient, but OLS standard errors would be biased and inconsis-
tent as well as inefficient in this context. These standard-error inconsis-
tency problems could be redressed in a familiar manner by replacing the
OLS formula for estimating the variance-covariance of estimated coeffi-
cients with a heteroskedasticity-consistent formula like White’s or the
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appropriate heteroskedasticity-and-correlation-consistent formula, like
Newey-West for temporal correlation, Beck-Katz for contemporaneous
(spatial) correlation, or “cluster” for the case of common stochastic
shocks to all units i in each context j.

With stochastic dependence such that �* � �ij � �0ij � �1jxij � �2ijzj ,
on the other hand, OLS coefficient estimates are still unbiased and con-
sistent, but the error term presents us with two issues even in the case of
well-behaved �ij : heteroskedasticity (the composite residual term, �*,
varies; in fact, it varies depending on some linear combination of x and
z) as well as potentially severe autocorrelation (each �1j will be common
to all individuals i in context j).18

Thus, the random-effects and multilevel (hierarchical) cases produce
identical problems in OLS, and so the same solutions will apply. Note
first that some form of the familiar White or Huber-White consistent
variance-covariance estimators, that is, “robust” standard errors, will re-
dress the inconsistency in OLS estimates of the estimated coefficients’
variance-covariance, that is, V(�̂)ols.

Recall that, given nonspherical disturbances,

V(�̂) � E[(� � �̂)(� � �̂)�] � E[{� �(� � (X�X)�1 X��)}

� {� � (� � (X�X)�1X��)}�]

� E[{(X�X)�1X��}{(X�X)�1 X��}�] � E[(X�X)�1X����X(X�X)�1]

� (X�X)�1X� [E(���)]X(X�X)�1 � (X�X)�1X� [V(�)]X(X�X)�1 (55)

Under classical linear-regression assumptions, � � N(0, �2I) and E(��X)
� 0, and so this reduces to 

¨

18. Some current literature even suggests that OLS is biased in the presence of such
multilevel random effects. This is false if biased refers to the OLS coefficient estimates. Pro-
vided that the context-specific or other components of the composite error term do not cor-
relate with the regressors, OLS coefficient estimates will remain unbiased and consistent,
although inefficient. The fact that Zj and �j are both common to all individuals in context
j implies that the pattern of the nonsphericity in the composite V(�*) relates to a regressor,
Z, producing biased, inconsistent, and inefficient OLS standard-error estimates, but that
does not imply that C(Zj ,�*) is nonzero, which is the condition that would bias OLS coef-
ficient estimates. The “problem” with OLS for hierarchical models therefore resides solely
in the inefficiency of OLS coefficient estimates and in the generally poor properties of the
OLS estimates of V(�̂). The problem is similar to that typically induced by strong tempo -
ral or spatial correlation: OLS coefficient estimates are unbiased and consistent but ineffi-
cient; standard errors are biased, inconsistent, and inefficient. The inefficiency in coefficient
estimates can be dramatic if the within-context correlation of individual errors is great, per-
haps dramatic enough to render unbiasedness and consistency of little practical comfort,
but, even so, the problem is efficiency, not bias or inconsistency.

¨



V(�̂) � E[(� � �̂)(� � �̂)�] � (X�X)�1X�[V(�)](X�X)�1X

� (X�X)�1X��2IX(X�X)�1

� �2(X�X)�1X�X(X�X)�1 � �2(X�X)�1

With random effects, �* � � � �0 � �1x � �2z; in multilevel data, �*
� �ij � �0ij � �1jxij � �2ijzj. Both violate the assumptions of classical lin-
ear regression in essentially the same way. In our random-coefficient
case:

E(�*�*�) � E(� � �0 � �1x � �2z)(� � �0 � �1x � �2z)�

��� � �0�� � �1x�� � �2z�� � ��0� � �0�0� � �1x�0�

� E �� �2z�0� � �x��1� � �0x��1� � �1xx��1� � �2zx��1�    � (56)
� �z��2� � �0z��2� � �1xz��2� � �zz��2�

Even assuming that (�, �0, �1, �2) are independently and identically dis-
tributed (i.i.d.) N(0, �2I), the variance-covariance matrix for �̂ in the
random coefficient model will be

V(�̂RC) � 2�2 � xx��2 � zz��2 � �2(2I � xx� � zz�) (57)

In the hierarchical model, the basic structure is the same, but the
claim that (�, �0 , �1, �2) would be i.i.d. is less plausible because, among
other reasons, context-level variance (�1j) is unlikely to equal unit-level
variances (�ij , �0ij , �2ij). It is more plausible to assume that between-level
variation differs but within-level variation is constant. If so, the variance-
covariance of �̂ in the hierarchical case is

V(�̂HM) � 2�2
ind � xx��2

context � zz��2
ind

� �2
ind (2I � zz�)� xx��2

context (58)

Notice that the expressions for V(�̂HM) in the hierarchical case and
for V(�̂RC) in the random-coefficient case are almost identical. The only
difference is the separation we allow for the variances of components of
�* in the hierarchical case, because such separation seems substantively
sensible, that we do not allow in the random-coefficient case. In either
case, the familiar class of robust estimators and/or reasonably familiar
versions of feasible generalized least squares (FGLS) will redress OLS
problems sufficiently in a relatively straightforward manner.

Recall that White’s heteroskedastic-consistent estimator, for example,
is

n1 
V(�̂) � n(X�X)�1S0(X�X)�1 where S0 � �e2

i xix�in i�1

¨
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As Greene (2003) writes, White’s estimator “implies that, without ac-
tually specifying the type of heteroskedasticity, we can still make appro-
priate inferences based on the results of least squares” (199). More pre-
cisely, White’s estimator produces consistent estimates of the coefficient
estimates’ variance-covariance matrix in the presence of pure hetero -
skedasticity (nonconstant variance) whose pattern is somehow related to
a pattern in xx�, that is, to some pattern in the regressors, the regressors
squared, or the cross-products of the regressors. Thus, in our pure ran-
dom-coefficient case, White’s estimator provides consistency (“robust-
ness”) to precisely the heteroskedasticity issue raised because the pattern
of nonconstant variance depends on the regressors x and z and het-
eroskedasticity is the only issue raised. In the hierarchical-model case, we
might additionally have concerns about a correlation among residuals
due to the common components, �1j , in the errors of all individuals in
context j. The pattern of this induced correlation will likewise relate to
the regressors x and z (and their products and cross-products). In this
case, a Huber-White heteroskedasticity-and-clustering-consistent vari-
ance-covariance estimator will produce the appropriately “robust” stan-
dard errors.19

Such “robust” standard-error estimators leave the inefficient coeffi-
cient estimates unchanged and are not efficient in their estimates of coef-
ficient-estimate variance-covariance either. To redress these issues, feasible
weighted least squares (FWLS) may be appropriate for the pure het-
eroskedasticity induced by simple random effects, and FGLS may be ap-
propriate for the heteroskedasticity and correlation induced by the clus-
tering likely in the hierarchical context. Specifically, since the patterns of
heteroskedasticity or correlated errors producing the concerns are a
simple function of the regressors involved in the interactions, one can con-
duct FWLS if appropriate and desired following these steps: (1) estimate
by OLS; (2) save the OLS residuals; (3) square the OLS residuals; (4)
regress the squared residuals on the offending regressors (x and z here);
(5) save the predicted values of this auxiliary regression. The researchers
would then (6) use the inverse of the square roots of these predicted values
as weights for the FWLS reestimation. One may wish instead to regress
the log of the squared OLS residuals on the offending regressors and save
the exponential of these fitted values in step (5) to avoid estimating nega-
tive variances and then attempting to invert their square roots in step (6).
The procedure for implementing FGLS if appropriate and desired is simi-
lar, except that both variance and covariance parameters are to be esti-
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19. Again, Franzese (2005) discusses this matter further.



mated in steps (3) and (4) for insertion into the V(�̂) whose “square root
inverse” is to provide the weighting matrix in step (6).20

As evidence in support of the claim that some form of a robust-clus -
ter estimate will suffice in the hierarchical model with random coeffi-
cients case, we conducted several Monte Carlo experiments applying
OLS, OLS with heteroskedasticity-consistent standard-error estimation,
OLS with heteroskedasticity-and-cluster-consistent standard-error esti-
mation, and random-effect-model estimation.21 In all cases, the data
were actually generated using hierarchical-model structures (with several
alternative relative variances and covariances of the error components
and the right-hand-side variables) and in samples with fifty j units and
one hundred observations per unit (to correspond to a rather small sur-
vey conducted in each of the fifty U.S. states). All four estimation tech-
niques yielded unbiased coefficient estimates, but the standard-error es-
timates, not surprisingly, were wrong with OLS and with robust
standard-error estimates that ignore within-level autocorrelation (i.e., es-
timators consistent to heteroskedasticity only) but were nearly as good
with the robust-cluster-estimation strategy as with the full random-
 effects model (the estimates were within 5 percent of each other). Ap -
preciable efficiency gains in coefficient estimates from the hierarchical
models relative to the OLS models were also notably absent. Accord-
ingly, the main conclusion of our exercise was that one seemed generally
to have little to gain—in linear models in samples of these dimensions
anyway—from complicated random-coefficients and hierarchical-model-
ing strategies. OLS with robust variance-covariance estimator strategies
(e.g., in STATA, one simply appends “, robust” or “, robust cluster” to
the end of the estimation command) seemed generally to suffice. Of
course, we would demand much further simulation, across wider and
more systematically varying model types and ranges of parameters and
sample dimensions, to support this conclusion more wholeheartedly as a
general one. In this sample dimension and model context at least, how-
ever, simpler strategies work almost indistinguishably from the more

¨

Extensions 129

20. The “square-root inverse” of a matrix with nonzero off-diagonal elements is not
a simple inversion of the square root of each of the elements, as it is in the FWLS case
where V(�) is diagonal. However, most statistical software packages will find the square-
root inverse of a matrix, and so we need not detain the reader with these computations.

One could also iterate the FWLS or FGLS procedures, and common practice is to do
so, even though, statistically, the iterated and one-shot strategies have identical properties.

21. The variance-covariance matrix for coefficients estimated with the particular ro-
bust cluster we implemented (using STATA) is V(�̂) � (X�X)�1SJ(X�X)�1 where SJ �

� J
j�1uj�uj and where uj � �nj

i�1eijxij. We estimated the random effects model using hierarchi-
cal linear model (HLM) software. 

¨



complex ones, and so we are happy to argue for simplicity in cases like
this at any rate. We also note, however, that the properties of these “ro-
bust” standard-error estimators deteriorate in smaller samples. For the
simple heteroskedasticity-consistent estimator, this seems to occur only
in very small samples beginning around N � 35. For robust-cluster esti-
mators, two sample-size dimensions are key: total, N, and J, the number
of “contexts.” Again, very small J, say, below about thirty, and/or N be-
come increasingly problematic.22
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22. These sample sizes and dimensions come from consideration of the small-sample
adjustments some statisticians have recommended to these robust estimators, multiplying
White’s by a term involving N/(N � 1) and robust cluster by a term involving [N/(N �

1)][J/( J � 1)]. Franzese (2005) discusses these considerations in far greater depth. See also
Achen (2005), who correctly stresses the possible reliance upon linearity for many of these
results and conclusions.



6
�

S U M M A RY

We have emphasized the importance of understanding the links be-
tween substantive theories and empirical tests of those theories.

Social scientists often formulate hypotheses that demand some complex-
ity beyond the simple linear-additive model. Multiplicative interaction
terms provide one simple means to enhance the match of these complex
theories to appropriate empirical statistical analyses.

We conclude with this summary of our recommendations on the use
and interpretation of interactive terms in linear-regression models. In
order:

• Theory: What is the scientific phenomenon to be studied? Does your
theory suggest that the effects of some variable(s) x depend on some
other variable(s) z (implying the converse that the effect(s) of z de-
pend(s) on x)? Does it imply anything more specific about the manner
in which the effects of x and of z depend on each other?

• Model: What is the appropriate mathematical model to express your
theory? Write the formal mathematical expression that encapsulates
your theory. In the case where the theory implies that the effect(s) of x
depend(s) on z and vice versa, (a) simple multiplicative interaction(s)
will often suffice to express that (those) proposition(s). If the theory
implies something more specific, ideally one would specify that more
specific (perhaps nonlinear) form of the interactions.

• Estimation: Estimate the model with an appropriate estimation strat-
egy; OLS (or nonlinear regression model) with appropriately “robust”
standard errors typically suffices.
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• Interpretation: What are the substantive effects of interest? Conduct
appropriate hypothesis tests that match your substantive theoretical
propositions. Calculate marginal effects using derivatives to describe
the effects of the variable(s) of interest, x and/or z, at various, mean-
ingful levels of the other variables. Calculate changes in the predicted
values of y induced as some variable(s) of interest, x and/or z,
change(s) at various, meaningful levels of the other variables. Also cal-
culate the standard errors of these estimated effects and/or confidence
intervals.

• Presentation: Present tables or graphs including both marginal effects
or differences and accompanying measures of uncertainty or including
both predicted values and accompanying measures of uncertainty. Plot
or tabulate these effects across a range of meaningful levels of the other
variables.
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A P P E N D I X  A .

D I F F E R E N T I AT I O N  R U L E S

Here is a table of useful differentiation rules (for a more complete list
of differentiation rules, we refer the reader to Kleppner and Ramsey

1985).
Let a, b, c � constants; x, z, w � variables; y � a function of some

variable(s); f( ), g( ) � functions.
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A P P E N D I X  B .

S TATA  S Y N TA X

Many statistical software packages are available to researchers. Be-
cause STATA is prominent in the social sciences, we provide STATA-

based syntax for readers to use in following our advice on interpreting and
presenting results from linear models that include interaction terms.1

We advise creating a separate data set that contains simulated values
for each of the variables in the regression analysis (it can be used for mar-
ginal effects and/or for predicted values, or separate ones can be used for
each approach). A data set of simulated values enables the researcher to
interpret effects along evenly spaced values of one or more of the vari-
ables, within a substantively useful range at which marginal effects, pre-
dicted values, and differences in predicted values can easily be inter-
preted (where the actual data set may not contain evenly spaced values).

Marginal Effects, Standard Errors, 
and Confidence Intervals

To begin, determine the number of observations that will be contained in
the simulation data set. A researcher might want to calculate the estimated
marginal effects of x as z ranges from its minimum to its maximum, at
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evenly spaced increments (e.g., if the variable z ranges from 1 to 10, and
the user wishes z to vary in 1-unit increments, this would imply 10 obser-
vations). We advise selecting a manageable number of values (5–100).
Open STATA and create a new data set by setting the number of observa-
tions, v (e.g., “10”), to be included:

set obs v

One could manually enter each evenly spaced value into a data set
(e.g., 1, 2, 3, etc.) using the data editor. A more efficient way of setting
values of z is easily found:

egen z = fill(min(unit)max)

This command creates a variable z that ranges from min (e.g., “1”)
to max (e.g., “10”) in unit increments (e.g., “1”). If, following our gov-
ernment-durability example, z is to range between 40 and 80 and rise by
5-unit increments, then we would need 9 observations, and we would
run the following command lines to generate values of z:

set obs 9

egen z = fill(40(5)80)

Then, save the data set:

save dydxdata.dta

After you have created a data set that allows for a range of z values,
return to the empirical data:

use realdata.dta

To estimate the following “standard model,” given variables y, x, z
and other covariates, w, in the data set:

y � �0 � �xx � �zz � �xzxz � �ww � �

Generate the multiplicative term, xz:

gen xz = x*z

Estimate the linear-regression model:

regress y x z xz w

Recall that the marginal effects of x and z on y are �ŷ/�x � �̂x � �̂xzz and
�ŷ/�z � �̂z � �̂xzx.

Marginal effects are calculated by adding the estimated �̂x to the
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product of each value of z with the estimated coefficient �̂xz. Open the
simulation data set to calculate marginal effects:

use dydxdata.dta, clear

This command will call up the simulation data set and clear the em-
pirical data set. The OLS estimates will remain in memory (although typ-
ing “clear” on its own will remove the estimates from memory).

One could take the estimated coefficients from the regression output
and create a new variable:

gen dydx = �̂x + z* �̂xz

where the estimated value �̂x from the regression output (e.g., “-2”) is
entered instead of “�̂x” and the estimated value of �̂xz from the regres-
sion output (e.g., “10”) is entered in place of “�̂xz .” This command line
would thus create v values corresponding with the marginal effects of x
at various values of z. A disadvantage to this procedure is that it is pos-
sible to mistype the estimated values, creating grave errors in the calcu-
lated effects. A less error-prone way of calculating the marginal effects,
then, is to use the estimates STATA stores in memory.

STATA stores the estimated coefficient �̂x in memory as _b[x] and the
coefficient �̂xz in memory as _b[xz], and so a variable that consists of the
marginal effects of x as z varies across the evenly incrementing values of
z is generated as follows:

gen dydx=_b[x]+_b[xz]*z                       

Using the variable dydx, a table or plot of selected marginal effects for
evenly spaced values of interest is now easily created.2

Presentations of marginal effects should also include an indication of
our level of certainty or uncertainty regarding these marginal effects. Re-
call that the estimated variance of the marginal effects in this example

would be V(�ŷ/�x) � V(�̂x) � z2V(�̂xz) � 2zC(�̂x ,�̂xz). Calculating

V(�ŷ/�x) is straightforward from there. The estimated variance-covari-

¨ ¨ ¨ ¨ ¨
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2. Users can also take advantage of STATA’s programmed postestimation commands.
The command lincom will report estimates, standard errors, t-statistics, p-levels, and a 95
percent confidence interval for any linear combination of coefficients. So, lincom can be
used to calculated marginal effects at selected values of z: lincom x zvalue*xz will calculate
�̂x � �̂xzz at the z-value entered into the command line. For a handful of marginal effects,
lincom is a useful shortcut; the disadvantage is that the z-values must be entered one at a
time. If more than a handful of effects are desired (or if graphing is desired), then the pro-
cedure outlined in the text will be more serviceable. Alternatively, lincom can be written
into a looping program and the results stored in a data set that will allow graphing. Ap-
pendix B contains this programming syntax.



ance matrix of estimated coefficients is retrieved in STATA by typing
“vce” after an estimation command. The user could then simply gener-

ate a new variable by taking the specific values of V(�̂x), V(�̂xz), and

C(�̂x ,�̂xz) acquired from viewing the values in the variance-covariance
matrix.

gen vardydx = V(�̂x)+z*z*V(�̂xz)+2*z*C(�̂x ,�̂xz)

where V(�̂x), V(�̂xz), and C(�̂x ,�̂xz), would be replaced by their estimated
values (e.g., “2”).

Again, although this “enter by hand” method is transparent, human
error in data entry could be a problem. A less error-prone method uses

the estimates that STATA stores in memory. The square root of V(�̂x)

is in “_se[x],” and the square root of V(�̂xz) is in “_se[xz].” The value

C(�̂x ,�̂xz) is stored as the element in the row and column corresponding
to x and xz in the estimated variance-covariance matrix of the coefficient
estimates, vce. In this particular case, given the order of the variables in
the estimated equation, it is in the third row, first column (and, because
the variance-covariance matrix is symmetric, also in the first row, third
column).

Create a matrix V to represent the variance-covariance matrix of the
coefficient estimates, VCE.

matrix V = get(VCE)

Generate a variable C_x_xz, which contains the covariance of interest,
extracted from its position in the matrix V.

gen C_x_xz = V[3,1]

The estimated variance (and standard error) of each estimated mar-
ginal effect can thus be calculated as

gen vardydx=(_se[x]ˆ2)+(z*z)*(_se[xz]ˆ2)+2*z*C_x_xz

gen sedydx=sqrt(vardydx)

A table of marginal effects with accompanying standard errors could
be generated as follows:

tabdisp z, cellvar(dydx sedydx)

This command line would present a table featuring all v values of z,
with the appropriate marginal effect and standard error of the marginal ef-
fect. This table is likely to be useful for the researcher for interpretation,

¨ ¨ ¨

¨ ¨ ¨¨ ¨ ¨

¨ ¨ ¨
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but for presentational purposes, only a set of selected values of z might be
incorporated into an abbreviated table.

Alternatively, marginal effects can be graphed. Recall that confidence
intervals can be generated with the following formula: �ŷ/�x � tdf,p


��V(�ŷ/�x) . STATA stores the degrees of freedom from the previous esti-
mation as “e(df_r),” and the researcher can use the inverse t-distribution
function to create tdf,p . For a 95 percent confidence interval, the lower
and upper bounds are calculated as

gen LBdydx=dydx-invttail(e(df_r),.025)*sedydx

gen UBdydx=dydx+invttail(e(df_r),.025)*sedydx

This command graphs estimated marginal effects with confidence in-
tervals, along values of z:

twoway connected dydx LBdydx UBdydx z

These procedures are summarized in table B1.

¨
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TABLE B1. STATA Commands for Calculating Marginal Effects of x on y, Standard Errors
of Those Effects, and Confidence Intervals around Those Effects

Procedures Command Syntax

Create simulation data set: v evenly set obs v
spaced values for z from its minimum egen z � fill(min(unit)max)
to its maximum. Save the data set. save dydxdata.dta

Open the original data, generate the mul- use realdata.dta
tiplicative term, and estimate the gen xz � x*z
linear-regression model. regress y x z xz w

Open the simulation data set and calcu- use dydxdata.dta, clear
late the estimated marginal effect. gen dydx��b [x] � �b [xz] *z

Create a matrix from the estimated co- matrix V � get (VCE)
variance matrix of the coefficient esti- gen C�x�xz�V [3,1]
mates, pull out the stored element
C( �̂x, �̂xz), and create a variable con-
taining it.

Calculate the estimated variance (and gen vardydx�(�se[x] ˆ2)� (z*z) * (�se[xz] ˆ2)
standard error) of each estimated mar- �2*z*C�x�xz
ginal effect. gen sedydx�sqrt (vardydx)

Generate a table displaying estimated tabdisp z, cellvar(dydx sedydx)
marginal effects and standard errors
for all v values of z.

Generate lower and upper confidence- gen LBdydx�dydx-invttail (e(df�r),.025)*sedydx
interval bounds. gen UBdydx�dydx�invttail(e(df�r),.025)*sedydx

Graph the estimated marginal effects and twoway connected dydx LBdydx UBdydx z
the upper and lower confidence inter-
vals along values of z.
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Differences in predicted values can be generated by multiplying the
marginal effects calculated previously by �x (recall that �y � �x(�̂x �

�̂xzz0) so long as x enters linearly into the interaction). The estimated
variance of these differences in predicted values, similarly, is calculated
by multiplying the estimated variance of the estimated marginal effect by
�x2. For example:

gen diffyhat = a*(dydx)

gen vardiffyhat = (aˆ2)*vardydx

where a is �x, (e.g., “2”).

Predicted Values, Standard Errors, 
and Confidence Intervals

Predicted values, ŷ, are generated by summing the products of the right-
hand-side variables, set at particular values, and their corresponding co-
efficients: ŷ � Mh�̂, where Mh is a matrix of values at which x, z, and
any other variables in the model are set.

We advise creating a simulation data set that contains the values at
which x, z, and any other variables in the model are to be set. Begin by
determining the number of observations that will be contained in the
data set. A researcher might want to calculate the estimated predicted
values as z ranges from its minimum to its maximum, at evenly spaced
increments (e.g., if the variable z ranges from 1 to 10, and the user wishes
z to vary in 1-unit increments, this would imply 10 observations). We
 advise selecting a manageable number of values (5–100). Open STATA
and create a new data set by setting the number of observations, v, to be
included:

set obs v

One could manually enter each evenly spaced value into a data set
(e.g., 1, 2, 3, etc.) using the data editor. A more efficient way of setting
values of z is easily found:

egen z = fill(min(unit)max)

This command creates a variable z that ranges from min (e.g., “1”)
to max (e.g., “10”) in unit increments (e.g., “1”). Set the other variables
at the desired level, for example, the means, or modes, or substantively
interesting values, using the generate command. To generate predicted
probabilities based on a model that contains k regressors (including the



constant), k total variables must be created. In this example, we create
variable x that takes the value c1 (e.g., “10”), variable w that takes the
value c2 (e.g., “-2”), and variable col1 that takes the value of 1 (later to
be multiplied by the intercept).

gen x=c1

gen w=c2

gen col1=1

Note that each of these variables in the data set will be set at a con-
stant value: the only variable that will vary is z; all other variables (aside
from the interaction term) are held constant.3 Create the interaction term
that reflects the values to which x and z are held and save the data set.

gen xz=x*z

save yhatdata.dta

Open the real data set:

use realdata.dta

To estimate the following “standard model,” given variables y, x, and
z in the data set.

y � �0 � �xx � �zz � �xzxz � �

Generate the multiplicative term, xz:

gen xz � x*z

Estimate the linear-regression model:

regress y x z xz w

Open the simulation data set:

use yhatdata.dta, clear

This command will call up the simulation data set and clear the em-
pirical data set. The OLS estimates will remain in memory (although typ-
ing “clear” on its own will remove the estimates from memory).
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3. To generate several blocks of set values that allow z to range from its minimum to
its maximum, but also allow x to take on different values, the user could take advantage
of the expand command.  Generate the first block of values following the preceding in -
structions and setting x to xa. Then expand the data set by two: expand 2. This command
line will create a block of v additional observations that will exactly match the first. Then
replace the value of x in the new block of observations: replace x=newvalue in (v+1)/2v
(e.g., replace x = 4 in 11/20).



Assemble the variables into a matrix:4

mkmat x z xz w col1, matrix(Mh)

This command creates matrix Mh, which contains the specified val -
ues at which our variables are set: x is fixed at the value c1; z varies at
regular intervals between some minimum and maximum; the xz corre-
spondingly varies, as it is the product of x (which is held at c1) and z
(which varies). The covariate w is fixed at c2.

Recall that ŷ � Mh�̂. Although �̂ is a column vector of coefficients,
STATA stores the estimated coefficients as a 1 � k row vector, e(b). So
we want to create B, a column vector with k � 1 dimensions, that takes
the stored coefficients and transposes them into �̂:

matrix B=e(b)'

Calculating the predicted values is simply a matter of multiplying Mh
by B:

matrix yhat=Mh*B

Then convert the resulting column vector into a variable, yhat:

svmat yhat, name(yhat)

Recall that V(ŷ) � Mh V[�̂]Mh�. STATA stores the estimated variance-

covariance matrix of the estimated coefficients, V[�̂], as VCE in its mem-

ory. We create a matrix v consisting of V[�̂]:

matrix V=get(VCE)

We can now calculate the variance of the predicted values as follows:

matrix VCEYH=Mh*V*Mh'

This command creates a matrix, VCEYH, that contains the variances
and covariances of the predicted values. The diagonal elements in the
variance-covariance matrix of predicted values are those of interest to us,
as they correspond with the estimated variance of the predicted values.
We want to extract these diagonal elements into a vector:

¨

¨

¨ ¨
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4. A shortcut is provided by the predict command. Estimate the regression on the orig-
inal data, open the simulated data, and enter predict yhat (bypassing creation of Mh). The
predict command line generates predicted values using the stored regression coefficients
and the values of the variables in the current data set. As long as the variables in the sim-
ulation data set have the same name as the variables in the original data set, the predict
command line will produce the desired results. Entering predict seyhat, stdp will generate
standard errors around the predicted values. 



matrix VYH= (vecdiag(VCEYH))'

The vecdiag command creates a row vector from the diagonal ele-
ments of the variance-covariance matrix of the predicted values. Because
we want a column vector rather than a row vector, a transpose appears
at the end of the command.

We then create a new variable, vyhat, which contains a unique esti-
mated variance to correspond with each predicted value yhat:

svmat VYH, name(vyhat)

Taking the square root produces the estimated standard error of each
predicted value yhat:

gen seyhat = sqrt(vyhat)

The researcher can next present a table of predicted values with cor-
responding standard errors:

tabdisp z, cellvar(yhat seyhat)

Predicted values are effectively displayed when graphed with confi-
dence intervals. The confidence intervals around predicted values ŷ can

be constructed as ŷ � tdf,p 
�V(ŷ), where ŷ corresponds with the values

in yhat, 
�V(ŷ) corresponds with the values in seyhat, and tdf,p refers to
the relevant critical value from the t-distribution. STATA stores the de-
grees of freedom from the previous estimation as “e(df_r),” and the re-
searcher can utilize the inverse t-distribution function to create the mul-
tiplier tdf,p.

For a 95 percent confidence interval, the lower and upper bounds are
calculated as follows:

gen LByhat=yhat-invttail(e(df_r),.025)*seyhat

gen UByhat=yhat+invttail(e df_r),.025)*seyhat

The predicted values and confidence intervals can be graphed along
values of z as follows:

twoway connected yhat LByhat UByhat z

These procedures are summarized in table B2.

¨

¨
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TABLE B2. STATA Commands for Calculating Predicted Values of y, Standard Errors
for Those Predicted Values, and Confidence Intervals around Those Predicted Values

Procedures Command Syntax

Create simulation data set that con- set obs v
tains k total variables. Begin with egen z � fill(min(unit)max)
v evenly spaced values for z from gen x � c1
its minimum to its maximum. gen w � c2
Create variables that set the re- gen col1 � 1
maining covariates at meaningful gen xz � xz
values, including a column of 1s save yhatdata.dta
for the intercept. Create the inter-
action term. Save the data set.

Open the original data, generate use realdata.dta
the multiplicative term, and esti- gen xz � x*z
mate the linear-regression model. regress y x z xz w

Open the simulation data set and as- use yhatdata.dta, clear
semble the matrix of set values. mkmat x z xz w col1, matrix(Mh)

Create a column vector containing matrix B�e(b)’
the coefficient estimates.

Create a column vector of predicted matrix Yhat�Mh*B
values.

Convert the column vector into a svmat Yhat, name(yhat)
variable.

Create a matrix from the estimated matrix V � get(VCE)
covariance matrix of the coeffi-
cient estimates.

Calculate the variance of the pre- matrix VCEYH�Mh*V*Mh’
dicted values.

Extract the diagonal elements of matrix VYH�(vecdiag(VCEYH))’
the variance-covariance matrix of
predicted values into a column
vector.

Convert the column vector into a svmat VYH, name(vyhat)
variable.

Calculate the estimated standard gen seyhat � sqrt(vyhat)
error of each predicted value.

Present a table of predicted values tabdisp z, cellvar(yhat seyhat)
with corresponding standard
errors.

Generate lower and upper gen LByhat�yhat-invttail(e(df�r),.025)*seyhat
confidence-interval bounds. gen UByhat�yhat�invttail(e(df�r),.025)*seyhat

Graph the predicted values and the twoway connected yhat LByhat UByhat z
upper and lower confidence inter-
vals along values of z.



Marginal Effects, Using “lincom”

The STATA command “lincom” provides a shortcut for calculating mar-
ginal effects and their estimated standard errors. It calculates a linear
combination of estimators following regression. The disadvantage to
“lincom” is that it can be cumbersome to use when the user desires to
calculate marginal effects across several values. Here, we provide a loop-
ing command that applies lincom across a range of values. In the ex-
ample, the marginal effects of x are calculated across values of z (for clar-
ity, denoted as zvalues), as z takes values between 0 and 6. The
programming loop will post four types of results to a data set called lin-
comresults.dta: the marginal effect estimates from lincom, the associated
standard errors, the value of zvalues applied, and the degrees of freedom
in the model (this will be constant throughout, but it helps to have
STATA collect it).

program define lincomrange
version 9
tempname dydx
postfile ‘dydx’ dydx sedydx zvalues df using lincomresults, replace
quietly {

forvalues z = 0/6 { 
drop _all
use realdata.dta
reg y x z xz w
lincom x + ‘zvalues’*xz
post ‘dydx’ (r(estimate)) (r(se)) (‘zvalues’) (e(df_r))

}
}

postclose ‘dydx’
end
lincomrange
use lincomresults, clear
tabdisp zvalues, c(dydx sedydx)
gen LBdydx = dydx-invttail (df,.025)*sedydx
gen UBdydx = dydx+invtttail (df,.025)*sedydx
twoway connected dydx LBdydx UBdydx zvalues
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